Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chào đón quý thầy cô giáo và các em học sinh lớp 9! Hãy cùng Sytu khám phá đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Kỳ thi dự kiến diễn ra vào ngày thứ Năm, 16 tháng 06 năm 2022. Đề thi được thực hiện bởi thầy giáo Nguyễn Hải Dương, giáo viên Toán tại trường THCS Phan Chu Trinh, thành phố Buôn Ma Thuột, tỉnh Đắk Lắk. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Đắk Lắk: Hãy giải quyết câu đố về việc mua sách của bạn An để ôn thi tuyển sinh, cùng những bài toán thú vị khác về tam giác và parabol để rèn luyện khả năng giải toán của bạn. Chúng ta sẽ cùng tìm ra giá niêm yết của cuốn sách tham khảo Toán và sách tham khảo Ngữ Văn mà An mua, thông qua việc giảm giá và tăng giá của cửa hàng sách. Ngoài ra, chúng ta cũng sẽ cùng khám phá những bài toán thú vị về tam giác và parabol, từ việc chứng minh tứ giác nội tiếp đến việc xác định tham số để đường thẳng cắt parabol. Hãy tham gia Chương trình luyện thi Đề tuyển sinh môn Toán cùng Sytu để rèn luyện kỹ năng giải toán, chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công trên con đường học tập và nghệ thuật giải toán!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x – 2. Vẽ đồ thị (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) bằng phép tính. + Cho phương trình x2 – 5x + m + 2 = 0 (1) (m là tham số). a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x1 và x2 là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P. + Trên nửa đường tròn tâm O đường kính AB = 2R, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD.EC = CD.AC. c) Khi điểm C di động trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Tìm tất cả các số nguyên dương a và các số nguyên tố p thỏa mãn a2 = 7p4 + 9. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Đường thẳng MN cắt (O) tại các điểm P, Q (P thuộc cung nhỏ AB và Q thuộc cung nhỏ AC). Lấy điểm D trên cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDP cắt AB tại điểm I (I khác B). Đường thẳng DI cắt AC tại K. 1. Chứng minh rằng tứ giác AIPK nội tiếp. 2. Chứng minh rằng PK/PD = QB/QA. 3. Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (G khác P). Đường thằng IG cắt đường thẳng BC tại điểm E. Chứng minh rằng khi điểm D di chuyển trên cạnh BC thì tỉ số CD/CE không đổi. + Cho bảng ô vuông 3 x 3 (gồm ba dòng và ba cột). Người ta ghi tất cả các số thuộc tập hợp {1; 2; 3; 4; 5; 6; 7; 8; 9} vào các ô vuông của bảng, mỗi ô vuông ghi một số, sao cho tổng các số trong mỗi bảng vuông con cỡ 2 x 2 đều bằng nhau. 1. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. 2. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ 2 x 2.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán (lớp 10 chuyên Toán – hệ số 2) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Hai bạn An và Bình đang so về số lượng những viên bi mà hai bạn hiện có. An nói với Bình rằng: “Nếu bạn cho tôi một số viên bi từ túi của bạn thì tôi sẽ có số viên bi gấp 6 lần số viên bi của bạn. Còn nếu tôi cho bạn số viên bi như thế, số viên bi của bạn sẽ bằng 1/3 số viên bi của tôi”. Hỏi số viên bi ít nhất mà bạn An có thể có là bao nhiêu? + Cho đường tròn tâm O nội tiếp tam giác ABC, tiếp xúc với các cạnh AB, AC lần lượt tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. a) Chứng minh A, I, O thẳng hàng và I thuộc đường tròn (O). b) Các phân giác trong của các góc B và C cắt đường thẳng DE lần lượt tại M và N. Chứng minh tứ giác BCMN nội tiếp và tam giác BMC vuông. + Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k với k nguyên dương. Tìm giá trị lớn nhất của k.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Gia Lai : + Tìm một đa thức bậc ba P(x) với hệ số nguyên nhận x là một nghiệm và P(1) = -6. + Tìm tất cả các số nguyên x, y thỏa mãn: x2y2 – 2x2y + 3×2 + 4xy – 4x + 2y2 – 4y – 1 = 0. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), kẻ ba đường cao AD, BE, CF cắt nhau tại H, lấy điểm M trên cung nhỏ BC (M khác B và C). Gọi P là điểm đối xứng với M qua AB. a) Chứng minh: APB = ACB và tứ giác AHBP nội tiếp một đường tròn. b) Chứng minh H là tâm đường tròn nội tiếp tam giác FDE. c) Tìm giá trị nhỏ nhất của biểu thức T.