Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT TP HCM

Nội dung Đề chọn đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT TP HCM Bản PDF Ngày 20 và 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT TP HCM gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 04 bài toán, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT TP HCM : + Cho tam giác ABC nhọn không cân, nội tiếp đường tròn (O), có đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Tia AI cắt các đường thẳng DE, DF lần lượt tại X, Y. Đường tròn tâm M đường kính XY cắt BC tại các điểm S, T. a) Chứng minh rằng tiếp tuyến tại X, Y của đường tròn (DXY) cắt nhau trên đường cao qua đỉnh A của tam giác ABC và AX.AY = AS.AT. b) Chứng minh rằng đường tròn (MST) tiếp xúc với hai đường tròn (O) và (I). + Cho n là số nguyên dương thỏa mãn a(n) (hàm Euler) là lũy thừa của 2. a) Chứng minh rằng mọi ước nguyên tố lẻ (nếu có) của n đều có dạng 2^n + 1 với k thuộc N. b) Tìm n biết rằng n là số hoàn hảo (số hoàn hảo là số bằng với tổng các ước nguyên dương nhỏ hơn nó). + Bàn cờ vua “kỳ quặc” cũng là một hình vuông 8 x 8 nhưng vị trí các ô đen trắng không giống bàn cờ vua thông thường mà được sắp xếp thỏa mãn điều kiện: số ô đen trong mỗi cột bằng nhau và số ô đen trong mỗi hàng đôi một khác nhau. a) Hỏi số ô đen và số ô trắng trong bàn cờ vua “kỳ quặc” có bằng nhau hay không? b) Hỏi trong bàn cờ vua “kỳ quặc” có thể có tối đa bao nhiêu cặp ô có chung cạnh và khác màu?

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển HSG Toán 12 năm 2019 - 2020 trường Lê Quý Đôn - Hà Nội
Chiều thứ Ba ngày 27 tháng 08 tháng 2019, trường THPT Lê Quý Đôn, quận Đống Đa, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán nhằm tuyển chọn các em học sinh vào đội tuyển học sinh giỏi Toán 12 của nhà trường trong năm học 2019 – 2020. Đề chọn đội tuyển HSG Toán 12 năm 2019 – 2020 trường Lê Quý Đôn – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài khảo sát là 180 phút, nội dung đề bám sát chương trình Toán 10, 11 và phần kiến thức Toán 12 đã học. [ads] Trích dẫn đề chọn đội tuyển HSG Toán 12 năm 2019 – 2020 trường Lê Quý Đôn – Hà Nội : + Tìm m để đồ thị hàm số y = x3 – 3×2 + mx + 2 – m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm A, B, C bằng 3. + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc các cạnh AB, AC sao cho mặt phẳng (SMN) luôn vuông góc với mặt phẳng (ABC). Đặt AM = x, AN = y. Tìm x, y để tam giác SMN có diện tích bé nhất, lớn nhất. + Cho a, b, c là các số thực dương thoả mãn a + b + c = 3. Tìm giá trị lớn nhất của biểu thức P.
Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2019 - 2020 sở GDĐT Bến Tre
Thứ Năm ngày 22 tháng 08 năm 2019, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán 12 khối Trung học Phổ thông năm học 2019 – 2020. Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2019 – 2020 sở GD&ĐT Bến Tre gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. [ads] Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2019 – 2020 sở GD&ĐT Bến Tre : + Sắp xếp 1650 học sinh (cả nam và nữ) thành 22 hàng ngang và 75 hàng dọc. Biết rằng với hai hàng dọc bất kì, số lần xảy ra hai học sinh trong cùng hàng ngang có cùng giới tính không vượt quá 11. Chứng minh rằng số học sinh nam không vượt quá 928 em. + Tìm số nguyên nhỏ nhất n sao cho với n số thực phân biệt a1, a2 … an lấy từ đoạn [1;1000] luôn tồn tại ai, aj thỏa 0 < ai – aj < 1+ 3√aiaj với i, j thuộc {1, 2 … n}. + Gọi các điểm I, H lần lượt là tâm đường tròn nội tiếp, trực tâm của tam giác nhọn ABC, B1 và C1 lần lượt là trung điểm của AC và AB, tia B1I cắt cạnh AB tại B2 (B2 khác B1), tia C1I cắt phần kéo dài của AC tại C2, B2C2 cắt BC tại K, A1 là tâm đường tròn ngoại tiếp tam giác BHC. Chứng minh rằng: ba điểm I, A, A1 thẳng hàng khi và chỉ khi S_BKB2 = S_CKC2. (trong đó: S_BKB2 và S_CKC2 lần lượt là diện tích tam giác BKB2 và CKC2).
Đề chọn đội tuyển học sinh giỏi Toán năm 2018 - 2019 sở GD và ĐT TP. HCM
Kỳ thi chọn đội tuyển học sinh giỏi Toán năm 2018 – 2019 sở GD và ĐT TP. HCM được diễn ra trong vòng 2 ngày 26 và 27 tháng 09 năm 2018 nhằm tuyển lựa những học sinh xuất sắc môn Toán tham dự kỳ thi HSG cấp Quốc gia. Mỗi ngày thi gồm một đề tự luận với 4 bài toán, học sinh làm bài trong thời gian 180 phút.
Đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 - 2019 môn Toán sở GD và ĐT KonTum
Nhằm tuyển chọn các em học sinh có năng lực môn Toán của tỉnh KonTum để tham dự kỳ thi HSG Toán Quốc gia năm học 2018 – 2019, sở Giáo dục và Đào tạo KonTum tiến hành tổ chức kỳ thi học sinh giỏi cấp tỉnh, đề được biên soạn theo hình thức tự luận với 7 câu hỏi và bài tập, thang điểm thi 20 điểm, kỳ thi được tổ chức ngày 18 tháng 08 năm 2018, đề thi có lời giải chi tiết. Nội dung đề chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT KonTum : + Câu 1: Hệ phương trình. (3 điểm) + Câu 2: Chứng minh hệ thức lượng giác trong tam giác. (3 điểm) + Câu 3: Dãy số truy hồi với các yêu cầu chứng minh hoặc tìm số hạng tổng quát hoặc tính giới hạn. (2 điểm) + Câu 4: Tổ hợp. (3 điểm) + Câu 5: Hình học phẳng: Chứng minh tính chất hình học. Vận dụng các kiến thức chuyên. (5 điểm) + Câu 6: Số học. (2 điểm) + Câu 7: Bất đẳng thức. (2 điểm)