Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 11 môn Toán năm 2023 2024 trường THPT Lương Ngọc Quyến Thái Nguyên

Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2023 2024 trường THPT Lương Ngọc Quyến Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2023 – 2024 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2023 – 2024 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Cho tập hợp S = {1; 2; 3; …; 39; 40} gồm 40 số tự nhiên từ 1 đến 40. Lấy ngẫu nhiên ba số thuộc tập S. Tính xác suất để ba số lấy được lập thành cấp số cộng. + Cho tứ diện ABCD 1) Gọi EFG lần lượt là trọng tâm của tam giác ABC ACD ABD. a) Chứng minh (EFG BCD). b) Tính diện tích tam giác EFG theo diện tích tam giác BCD. + Gọi M là điểm thuộc miền trong của tam giác BCD. Kẻ qua M đường thẳng d AB. a) Xác định giao điểm B’ của đường thẳng d và mặt phẳng (ACD). b) Kẻ qua M các đường thẳng lần lượt song song với AC và AD cắt các mặt phẳng (ABD) và (ABC) theo thứ tự tại C D. Chứng minh rằng MB MC MD AB AC AD.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic lớp 11 môn Toán năm 2022 2023 cụm các trường THPT Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2022 2023 cụm các trường THPT Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic chọn học sinh giỏi môn Toán lớp 11 cấp cụm năm học 2022 – 2023 cụm các trường THPT trực thuộc sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi Olympic Toán lớp 11 năm 2022 – 2023 cụm các trường THPT – Hà Nội : + Hỏi có bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau tạo thành từ các chữ số 0, 1, 2, 3, 4, 5 sao cho hai chữ số 2 và 3 đứng cạnh nhau. + Cho hình chóp tam giác đều S.ABC, độ dài cạnh đáy là a và đường cao SO = 2a. Gọi H là trung điểm của BC, M là điểm thuộc đoạn thẳng OH (M khác O; M khác H). 1) Tính cosin góc giữa AH và SB. 2) Gọi (a) là mặt phẳng qua M và vuông góc với AH. Xác định thiết diện của hình chóp S.ABC cắt bởi (a). 3) Tính tỷ số AM/AH khi diện tích thiết diện của mặt phẳng (a) cắt hình chóp S.ABC đạt giá trị lớn nhất.