Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Cho hai số nguyên ab thỏa mãn đồng thời các điều kiện: a b là số nguyên chẵn và 2 2 4 3 11 a ab b chia hết cho 5. Chứng minh 2 2 a b chia hết cho 20. + Cho đa thức 2 f x x 4. Giả sử đa thức 5 2 P x x ax b có 5 nghiệm là 1 2 3 4 5 x x x x x. Tìm giá trị nhỏ nhất của 1 2 3 4 5 A f x f x f x f x f x. + Cho hình vuông ABCD tâm O, lấy M trên đoạn OC, không trùng O. Gọi S là điểm đối xứng với B qua M, đường thẳng BS cắt CD tại L. Gọi E là giao điểm của DM với BC F là giao điểm của AE và CD G là giao điểm của DE và BF. Gọi I và K theo thứ tự là giao điểm của AB và CG và DG. Chứng minh rằng: a) SL DS BL BD b) IE song song với BD c) AE vuông góc với CG d) DL BS BD DS.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG huyện Toán 8 năm 2018 - 2019 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát học sinh giỏi huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho hình vuông ABCD, điểm H thuộc cạnh BC (H không trùng với B và C). Trên nửa mặt phẳng bờ là BC không chứa hình vuông ABCD vẽ hình vuông CHIK. Gọi M là giao điểm của DH và BK, N là giao điểm của KH và BD. Chứng minh. + Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. + Cho đa thức 4 3 2 B(x) x ax bx cx d. Biết B(1) = 10; B(2) = 20; B(3) = 30. Tính B(12) + B(-8).
Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề giao lưu học sinh giỏi Toán 8 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 8 năm 2017 - 2018 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Chí Linh – Hải Dương : + Cho hình thoi ABCD cạnh a có. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho, AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. + Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). + Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố.