Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Phước

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Phước : + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi H là trực tâm của tam giác ABC, M là điểm bất kì trên cung nhỏ BC. Gọi I J lần lượt là hình chiếu của M lên các đường thẳng BC CA. Đường thẳng IJ cắt đường thẳng AB tại K. a) Chứng minh bốn điểm BKM I cùng thuộc một đường tròn. Từ đó suy ra MK AB. b) Gọi 123 MM M lần lượt là các điểm đối xứng của M qua các đường thẳng BC CA AB. Chứng minh bốn điểm 123 MM M và H thẳng hàng. c) Chứng minh khi điểm M di động trên cung nhỏ BC ta luôn có M M R BAC 2 3 4 sin. Xác định vị trí của điểm M khi dấu bằng xảy ra. + Giải phương trình nghiệm nguyên: 2 2 x y xy y x 6 2 7 0. + Cho x y là các số nguyên thỏa mãn 2 2 x y 2021 2022 chia hết cho xy. Chứng minh rằng x y là các số lẻ và nguyên tố cùng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán sở GD&ĐT Nghệ An. Đề thi được biên soạn theo dạng tự luận, với cấu trúc tương tự các năm học trước. Đề thi bao gồm 5 bài toán, thời gian làm bài là 120 phút. Trích đề thi chính thức tuyển sinh vào lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Nghệ An: 1. Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC). a) Chứng minh BOMH là tứ giác nội tiếp. b) MB cắt OH tại E. Chứng minh ME.HM = BE.HC. c) Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K. Chứng minh ba điểm C, K, E thẳng hàng. 2. Tình cảm gia đình có sức mạnh thật phi thường. Bạn Vi Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180 km từ Sơn La đến bệnh viện nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/giờ. Tính vận tốc xe đạp của bạn Chiến. 3. Xác định hàm số bậc nhất y = ax + b biết rằng đồ thị của hàm số đi qua hai điểm M(1;-1) và N(2;1).
Đề tuyển sinh chuyên năm 2019 2020 môn Toán sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên năm 2019 2020 môn Toán sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Gia Lai Đề thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Gia Lai Xin chào các thầy cô và các bạn học sinh! Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 chuyên năm học 2019 – 2020 môn Toán sở GD&ĐT Gia Lai. Đề thi này dành cho các bạn học sinh đăng ký học các lớp không chuyên tại các trường THPT chuyên trực thuộc sở GD&ĐT Gia Lai. Đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai bao gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai: Cho phương trình \(x^2 + 2(m - 2)x + m^2 - 3m - 1 = 0\), với m là tham số. a) Giải phương trình đã cho khi m = 1. b) Xác định giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1, x_2\) sao cho \(x_1^2 – x_1x_2 + x_2^2 = 9\). Quãng đường AB dài 180 km. Hai ô tô cùng khởi hành từ A đến B. Mỗi giờ ô tô thứ nhất chạy nhanh hơn 10 km so với ô tô thứ hai, nên ô tô thứ nhất đến B trước ô tô thứ hai 36 phút. Hãy tính vận tốc trung bình của mỗi ô tô. Cho đường tròn (O) và điểm A nằm ngoài (O). Đường thẳng AC cắt đường tròn (O) tại hai điểm B và C (AB < AC). Qua A vẽ một đường thẳng không đi qua điểm O, cắt đường tròn (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AC tại A cắt đường thẳng CE tại F. a) Chứng minh tứ giác ABEF nội tiếp đường tròn. b) Gọi M là giao điểm của đường thẳng FB và đường tròn (O) (M khác B). Chứng minh AC là đường trung trực của đoạn thẳng DM. c) Chứng minh \(CE \cdot CF + AD \cdot AE = AC^2\).
Đề tuyển sinh năm 2019 2020 môn Toán sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh năm 2019 2020 môn Toán sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh năm 2019-2020 môn Toán sở GD&ĐT Quảng Ngãi Đề tuyển sinh năm 2019-2020 môn Toán sở GD&ĐT Quảng Ngãi Chào các thầy cô giáo và các em học sinh! Sytu xin giới thiệu đến bạn đề tuyển sinh lớp 10 năm học 2019-2020 môn Toán do Sở Giáo dục và Đào tạo Quảng Ngãi tổ chức. Đề thi bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài là 90 phút và kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2019. Một trong các bài toán trong đề tuyển sinh là: "Một đội công nhân đặt kế hoạch sản xuất 250 sản phẩm. Trong 4 ngày đầu, họ hoàn thành đúng kế hoạch. Mỗi ngày sau đó, họ vượt mức 5 sản phẩm nên đã hoàn thành công việc sớm hơn 1 ngày so với dự định. Hỏi theo kế hoạch, mỗi ngày đội công nhân làm được bao nhiêu sản phẩm? Biết rằng năng suất làm việc của mỗi công nhân là như nhau." Bên cạnh đó, đề cũng cung cấp các bài toán khác như về tam giác vuông và hình vuông để kiểm tra kiến thức và kỹ năng của thí sinh. Hãy tham gia và thể hiện khả năng của mình trong kỳ thi tuyển sinh này!
Đề tuyển sinh vào 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp
Nội dung Đề tuyển sinh vào 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề tuyển sinh vào lớp 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp Đề tuyển sinh vào lớp 10 môn Toán chuyên năm 2019 2020 sở GD ĐT Đồng Tháp Sytu xin gửi đến các thầy cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2019 – 2020 sở GD&ĐT tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 08 tháng 06 năm 2019, với đề thi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em học sinh tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới.