Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào 10 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho phương trình: x2 + (2m + 1)x + m2 – 1 = 0 (1) (với x là ẩn số). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn: (x1 − x2)2 = x1 – 5×2. + Từ một điểm A nằm ngoài đường tròn (O; R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M; gọi I, K lần lượt là hình chiếu vuông góc của M trên đường thẳng AB và AC. 1. Chứng minh: AIMK là tứ giác nội tiếp đường tròn. 2. Vẽ MP vuông góc BC (P thuộc BC). Chứng minh: MPK = MBC. 3. Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất. + Cho a là số thực dương. Tìm giá trị nhỏ nhất của biểu thức T.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1)
Nội dung Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) Ngày 25 tháng 05 năm 2019, trường THPT chuyên Thái Bình, trực thuộc sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020. Đề thi chung được dành cho toàn bộ các thí sinh tham gia kỳ thi, đề thi gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Bài tuyển sinh Toán lớp 10 năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) chứa những câu hỏi thú vị và đa dạng. Một số điểm nổi bật trong đề bao gồm: 1. Bài toán về việc quyên góp sách của hai lớp 9A và 9B. Học sinh cần tính số học sinh mỗi lớp biết tổng số học sinh là 90 dựa trên số quyển sách mỗi lớp ủng hộ. 2. Bài toán về hai đường thẳng trên mặt phẳng tọa độ Oxy, yêu cầu tìm điều kiện để đường thẳng (d1) song song với (d2) và chứng minh một điểm cố định mà dường thẳng (d2) luôn đi qua với mọi giá trị của tham số m. 3. Bài toán về phương trình bậc hai và biểu thức có giá trị nhỏ nhất, học sinh cần tìm giá trị nhỏ nhất của biểu thức Q trong phạm vi các nghiệm của phương trình. Đề Toán tuyển sinh năm 2019 – 2020 trường chuyên Thái Bình (Vòng 1) không chỉ đánh giá kiến thức của học sinh mà còn đề cao khả năng tư duy logic, suy luận và giải quyết vấn đề. Đây là cơ hội để thí sinh thể hiện năng lực và sự sáng tạo của mình trong việc giải quyết các bài toán phức tạp.
Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2). Đây là đề thi được thiết kế dành cho các thí sinh dự thi vào các lớp 10 chuyên Toán – Tin. Đề thi gồm 1 trang với 4 bài toán, thời gian làm bài là 90 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2): + Với x, y là các số thực dương thỏa mãn điều kiện 4x^2 + 4y^2 + 17xy + 5x + 5y ≥ 1, tìm giá trị nhỏ nhất của biểu thức: P = 17x^2 + 17y^2 + 16xy. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K, L lần lượt là hình chiếu vuông góc của E, F lên BC. Giả sử FK cắt EL tại điềm J. Gọi H là hình chiếu vuông góc của J lên BC. 1) Chứng minh rằng HJ là phân giác của EHF. 2) Ký hiệu S1 và S2 lần lượt là diện tích của các tứ giác BFJL và CEJK. Chứng minh rằng: S1/S2 = BF^2/CE^2. 3) Gọi D là trung điểm của cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng. + Cho M là tập tất cả 4039 Số nguyên liên tiếp từ -2019 đến 2019. Chứng minh rằng trong 2021 số đôi một phân biệt được chọn bất kì từ tập M luôn tồn tại 3 số đôi một phân biệt có tổng bằng 0.
Đề Toán tuyển sinh năm 2019 2020 trường chuyên Thái Bình (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Thái Bình (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh lớp 10 trường chuyên Thái Bình (Vòng 2) Đề Toán tuyển sinh lớp 10 trường chuyên Thái Bình (Vòng 2) Ngày 26 tháng 05 năm 2019, trường THPT chuyên tỉnh Thái Bình đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2019 – 2020. Đề thi nhằm tuyển chọn các học sinh vào các lớp 10 chuyên Toán – Tin để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2) bao gồm 5 bài toán dạng tự luận, thời gian làm bài 150 phút. Trong đề thi, có bài toán như sau: Chứng minh rằng tồn tại điểm I trong mặt phẳng tọa độ và 2019 số thực dương R1, R2 … R2019 sao cho có đúng k điểm nguyên nằm trong đường tròn (I;Rk) với mọi k là số nguyên dương không vượt quá 2019. Trong hình vuông ABCD nội tiếp đường tròn, chứng minh rằng tứ giác EPND nội tiếp một đường tròn, góc EKM = góc DKM, và tính độ dài đoạn thẳng AE khi M là trung điểm của AD. Tìm các nghiệm nguyên (x;y) của phương trình √x + √y = √2020. Đề thi tạo cơ hội cho các thí sinh thể hiện kiến thức và khả năng giải quyết vấn đề trong môn Toán, từ đó đạt kết quả cao và có cơ hội được chọn vào các lớp chuyên Toán – Tin tại trường THPT chuyên Thái Bình.
Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội
Nội dung Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Trong kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội năm 2019, môn Toán đã được tổ chức vào Chủ Nhật ngày 26 tháng 05. Đề thi bao gồm 4 bài toán dạng tự luận, thời gian làm bài được giới hạn trong 120 phút. Một trong những bài toán được trích dẫn từ đề tuyển sinh là về hình vuông ABCD và đường tròn (O) nội tiếp hình vuông ABCD. Để giải bài toán này, thí sinh cần chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. Tiếp theo, thí sinh cần chứng minh rằng giao điểm của đường thẳng FB và đường tròn (O) là trung điểm của đoạn thẳng BG. Bài toán còn yêu cầu chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). Bài toán thứ hai yêu cầu tìm giá trị nhỏ nhất của biểu thức M = (x^2 + 4)/(y^2 + 1), với điều kiện 1 ≤ y ≤ 2, xy + 2 ≥ 2y. Cuối cùng, bài toán cuối cùng đưa ra một phương trình đối với các số nguyên x, y, và yêu cầu tìm tất cả các cặp số nguyên thỏa mãn phương trình đó. Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN Hà Nội năm 2019 là một thách thức đối với các em học sinh làm Toán. Để đạt điểm cao trong kỳ thi, thí sinh cần chuẩn bị kỹ lưỡng và thực hành nhiều bài tập.