Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Khánh Yên - Lào Cai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2023 – 2024 trường THCS Khánh Yên, huyện Văn Bàn, tỉnh Lào Cai. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Khánh Yên – Lào Cai : + Trong trò chơi rung chuông vàng trên sàn đấu có 120 học sinh được đánh số thứ tự từ 1 đến 120. Chọn ngẫu nhiên một học sinh để phỏng vấn. Tính xác suất của biến cố. 1. A : “Học sinh được chọn mang số tròn chục”. 2. B: “ Học sinh được chọn mang số chia cho 17 dư 2 và chia cho 3 dư 1”. + Để đánh máy một bản thảo cuốn sách gồm 71 trang, hai cô nhân viên văn phòng Nhung và Hoa cùng đánh máy trong 4 giờ, ngoài ra cô Hoa còn phải làm thêm 2,5 giờ nữa mới xong. Nếu cả cô Nhung và cô Hoa cùng đánh máy trong 4,75 giờ thì để hoàn thành công việc, cô Hoa chỉ cần làm thêm 45 phút nữa. Hỏi mỗi cô đánh máy riêng một mình thì trong một giờ đánh máy được bao nhiêu trang. + Bạn Hà làm một cái lồng đèn hình quả trám (xem hình bên) là hình ghép từ hai hình chóp tứ giác đều có cạnh đáy 20 cm, cạnh bên 32 cm, khoảng cách giũa hai đỉnh của hai hình chóp là 30 cm. a) Tính thể tích của lồng đèn. b) Bạn Hà muốn làm 50 cái lồng đèn như này, cần phải chuẩn bị bao nhiêu mét thanh tre? (mối nối giữa các que tre có độ dài không đáng kể).

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Vũ Thư – Thái Bình : + Cho hình vuông ABCD. Gọi K là điểm nằm giữa A và B, I là điểm nằm giữa B và C sao cho CI = BK. Đường thẳng AI cắt đường thẳng DC tại M. a) Chứng minh: IK // BM. b) Gọi N là điểm thuộc tia đối của tia CB sao cho CN = CM, O là giao điểm hai đường chéo của hình vuông ABCD. Chứng minh ∆BOI đồng dạng ∆BND. + Cho tam giác ABC vuông tại A. Lấy điểm D thuộc cạnh BC (D không trùng với B và C). Gọi E và F lần lượt là hình chiếu của D trên các cạnh AB và AC. a) Chứng minh rằng: Nếu AD vuông góc BC thì ∆AFE đồng dạng ∆ABC. b) Cho biết 222 211 AD DB DC. Chứng minh AD là trung tuyến hoặc AD là đường phân giác trong của ∆ABC. + Các số tự nhiên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó, luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. Tìm tất cả các số nguyên tố a và b sao cho a b ab ab 4 4 4 3 là độ dài ba cạnh của một tam giác vuông.
Đề học sinh giỏi cấp tỉnh Toán 8 năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 8 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 16 câu trắc nghiệm (08 điểm) và 04 câu tự luận (12 điểm), thời gian làm bài 150 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 8 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Số bàn thắng ghi được trong mỗi trận đấu (không tính loạt sút luân lưu) của một giải bóng đá được ghi lại trong bảng sau: Số bàn thắng 0 1 2 3 4 5 Số trận 4 7 8 9 2 2. Hỏi trong giải đấu đó có thể có nhiều nhất bao nhiêu trận đấu kết thúc với tỉ số hòa (trong 90 phút thi đấu chính thức)? + Trong một kì thi Hội khỏe Phù Đổng trường A có 12 học sinh giành được các giải thưởng, trong đó: 7 học sinh giành được ít nhất 2 giải, 4 học sinh giành được ít nhất 3 giải, 2 học sinh giành được số giải nhiều nhất, mỗi em 4 giải. Số giải trường A giành được là? + Trong tam giác ABC, đường trung tuyến AM M BC K là một điểm nằm trên đoạn thẳng AM sao cho 1 2 AK KM BK cắt AC ở N. Biết diện tích tam giác ABC bằng 2 60cm khi đó diện tích tam giác AKN là?
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Việt Trì - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm hai phần: phần trắc nghiệm khách quan: 16 câu – 08 điểm và phần tự luận: 04 câu – 12 điểm, thời gian làm bài: 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Việt Trì – Phú Thọ : + Lớp 8D có 34 em đi học phụ đạo ba môn: Toán, Ngữ văn, tiếng Anh. Có 12 em đi học Toán, số em đi học tiếng Anh nhiều gấp 3 lần số em đi học Ngữ văn. Trong đó có 5 em vừa đi học tiếng Anh vừa đi học Toán, 4 em vừa đi học tiếng Anh vừa đi học Ngữ văn, 3 em vừa đi học Toán vừa đi học Ngữ văn, 2 em đi học cả ba môn nói trên. Số em đi học tiếng Anh bằng? + Một ca nô xuôi từ bến A đến bến B, hai bến cách nhau 18km hết 1 giờ 30 phút. Biết vận tốc dòng nước chảy là 2km h thì vận tốc thực của ca nô (vận tốc khi dòng nước yên lặng) là? + Cho tam giác ABC nhọn, các đường cao AA BB CC H là trực tâm. a) Tính tổng HA HB HC AA BB CC b) Gọi AI là phân giác của ∆ABC IM IN thứ tự là phân giác của AIC và AIB. Chứng minh rằng: AN BI CM BN IC AM c) Tìm điều kiện của ∆ABC để biểu thức 2 22 2 AB BC CA AA BB CC đạt giá trị nhỏ nhất.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lương Tài - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh : + Cho đa thức 2 f x ax bx c với abc là các số hữu tỉ. Biết rằng f f f (0) (1) (2) có giá trị nguyên. Chứng minh rằng 2 2 a b có giá trị nguyên. + Cho a, b là hai số nguyên phân biệt lớn hơn 1 thỏa mãn 2 a b 2 2 là lũy thừa của một số nguyên tố khác 13 và 2 b a 2 2 chia hết cho 2 a b 2 2. Chứng minh 2 3 a là số chính phương. + Cho tam giác ABC có B 2C; trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) ∆ABM là tam giác cân và ABC 2AKC b) MA.KN = MN.KA; c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp.