Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng

Nội dung Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 của trường THCS Lê Thị Hồng Gấm, Đà Nẵng. Đề thi diễn ra vào ngày 13 tháng 05 năm 2023, với những câu hỏi chất lượng, phù hợp với chương trình học của lớp 9. Một số câu hỏi trong đề thi bao gồm: 1. Cho hai hàm số y=x và y=x^2+3. Hãy vẽ đồ thị của hai hàm số này trên cùng một hệ trục tọa độ Oxy. Tìm điểm C thuộc trục Oy sao cho diện tích tam giác ABC bằng 8 cm². 2. Hai đội thủy lợi A và B đào mương. Nếu mỗi đội làm một mình, tổng thời gian hai đội phải làm là 25 ngày, trong đó đội A nhanh hơn đội B. Nếu hai đội cùng làm, công việc hoàn thành trong 6 ngày. Tính thời gian để mỗi đội làm một mình xong công việc. 3. Cho đường tròn (O; R) và dây cung BC không qua O. Chứng minh tứ giác BCEF là tứ giác nội tiếp. Tính BK, AG, BG theo bán kính R của đường tròn. Chứng minh đường tròn ngoại tiếp tam giác HMI đi qua một điểm cố định khi A thay đổi trên cung BC. Đề thi thử Toán vào 10 năm 2023-2024 của trường THCS Lê Thị Hồng Gấm Đà Nẵng không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ thử sức và chuẩn bị tốt nhất cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .