Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Áp dụng kỹ thuật hệ số bất định giải bất đẳng thức - Vũ Hoàng vs Bá Cẩn

Có bao nhiêu điều bí ẩn mà bạn chưa biết đến? Câu trả lời là rất rất nhiều và đôi khi bạn cảm thấy bực bội, khó chịu khi không thể tìm ra một lời giải thích thỏa đáng cho bí ẩn nào đó. Nhưng bạn hãy quan niệm rằng đằng sau bất kì một điều gì luôn hàm chứa một ý nghĩa nhất định. Và cũng không phải ngẫu nhiên mà sự lí giải lại được hình thành. Trong thế giới bất đẳng thức cũng vậy. Đôi khi bạn không thể hiểu được tại sao người ta lại có thể tìm ra một lời giải trông có vẻ “kì cục” như thế!!! Phải chăng là lần mò và may rủi lắm mới tìm ra được? Câu trả lời lại một lần nữa được nhắc lại: mỗi lời giải đều có sự giải thích của riêng bản thân nó. Việc tìm ra lời giải đó phải đi qua một quá trình lập luận, thử, sai và đúng. Trong chuyên đề nho nhỏ này chúng tôi muốn giới thiệu đến các bạn một kĩ thuật cơ bản nhưng không kém phần hiệu quả trong việc chứng minh một số dạng của bất đẳng thức. Nó không giúp ta giải quyết tất cả các bài toán mà chỉ giúp ta tìm ra những lời giải ngắn gọn và ấn tượng trong một lớp bài toán nào đó. Một số bài toán tuy dễ đối với phương pháp này nhưng lại là khó đối với kỹ thuật kia, đây cũng là điều hiển nhiên và dễ hiểu. [ads] Tài liệu Áp dụng kỹ thuật hệ số bất định giải bất đẳng thức (viết tắt là U.C.T) của 2 tác giả Nguyễn Thúc Vũ Hoàng và Võ Quốc Bá Cẩn gồm 33 trang với các nội dung chính sau: + Phần 1. Bài toán mở đầu. + Phần 2. Khởi đầu cùng một số bài toán cơ bản. + Phần 3. Kĩ thuật chuẩn hóa và U.C.T + Phần 4. U.C.T và kỹ thuật phân tách các trường hợp + Phần 5. Kết hợp bất đẳng thức Vornicu Schur với U.C.T + Phần 6. Một dạng biểu diễn thú vị + Phần 7. Giải quyết một số bài toán mà điều kiện liên quan mật thiết đến nhau + Phần 8. U.C.T mở rộng + Phần 9. Lời kết + Phần 10. Bài tập áp dụng

Nguồn: toanmath.com

Đọc Sách

Phân dạng và bài tập chuyên đề bất đẳng thức - bất phương trình - Nguyễn Bảo Vương
Tài liệu gồm 302 trang phân dạng và tuyển chọn bài tập chuyên đề bất đẳng thức – bất phương trình, tài liệu do thầy Nguyễn Bảo Vương sưu tầm và biên soạn. Bất đẳng thức + Dạng 1. Sử dụng định nghĩa và tích chất cơ bản + Dạng 2. Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất + Dạng 3. Đặt ẩn phụ trong bất đẳng thức + Dạng 4. Sử dụng bất đẳng thức phụ Đại cương về bất phương trình + Dạng 1. Tìm điều kiện xác định của bất phương trình + Dạng 2. Xác định các bất phương trình tương đương và giải bất phương trình bằng phép biến đổi tương Bất phương trình và hệ bất phương trình bậc nhất hai ẩn + Dạng 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn + Dạng 2. Ứng dụng vào bài toán kinh tế Bất phương trình và hệ bất phương trình bậc nhất một ẩn + Dạng 1. Giải bất phương trình dạng ax + b < 0 + Dạng 2. Giải hệ bất phương trình bậc nhất một ẩn + Dạng 3. Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn [ads] Dấu của nhị thức bậc nhất + Dạng 1. Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất hai ẩn + Dạng 2. Ứng dụng xét dấu của nhị thức bậc nhất hai ẩn vào giải toán Phương trình và bất phương trình quy về bậc hai + Dạng 1. Phương trình và bất phương trình chứa ẩn trong dấu giá trị tuyệt đối + Dạng 2. Phương trình và bất phương trình chứa căn Dấu của tam thức bậc hai + Dạng 1. Xét dấu của biểu thức chứa tam thức bậc hai + Dạng 2. Bài toán chứa tham số liên quan đến tam thức bậc hai luôn mang một dấu Bất phương trình bậc hai + Dạng 1. Giải bất phương trình bậc hai + Dạng 2. Giải hệ bất phương trình bậc hai một ẩn + Dạng 3. Giải bất phương trình tích và bất phương trình chứa ẩn ở mấu thức + Dạng 4. Ứng dụng tam thức bậc hai, bất phương trình bậc hai trong chứng minh bất đẳng thức và tìm giá trị lớn nhất, nhỏ nhất Tổng hợp 336 bài tập trắc nghiệm bất đẳng thức và bất phương trình
Phân dạng và bài tập bất đẳng thức, GTLN - GTNN - Trần Quốc Nghĩa
Tài liệu gồm 58 trang phân dạng và tuyển chọn bài tập bất đẳng thức, GTLN – GTNN (Đại số 10), tài liệu do thầy Trần Quốc Nghĩa biên soạn. Chủ đề 1. BẤT ĐẲNG THỨC + Dạng 1. Chứng minh BĐT dựa vào định nghĩa và tính chất + Dạng 2. Chứng minh BĐT dựa vào BĐT Cauchy (AM-GM) + Dạng 3. Chứng minh BĐT dựa vào BĐT Cauchy Schwarz + Dạng 4. Chứng minh BĐT dựa vào BĐT C.B.S + Dạng 5. Chứng minh BĐT dựa vào tọa độ vectơ + Dạng 6. Bất đẳng thức về giá trị tuyệt đối + Dạng 7. Sử dụng phương pháp làm trội + Dạng 8. Ứng dụng BĐT để giải PT, HPT, BPT Bài tập trắc nghiệm chủ đề 1: Bất đẳng thức [ads] Chủ đề 2. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT + Dạng 1. Dùng tam thức bậc hai + Dạng 2. Dùng BĐT Cauchy + Dạng 3. Dùng BĐT C.B.S + Dạng 4. Dùng BĐT chứa dấu giá trị tuyệt đối + Dạng 5. Dùng tọa độ vectơ Bài tập trắc nghiệm chủ đề 2: GTLN-GTNN BÀI TẬP TỔNG HỢP BÀI TẬP TRẮC NGHIỆM
12 phương pháp chứng minh bất đẳng thức - Lớp 10 chuyên Toán Quảng Bình (2012 - 2015)
Trong môn Toán ở trường THPT, bất đẳng thức ngày càng được quan tâm đúng mức và tỏ ra có sức hấp dẫn mạnh mẽ nhờ vẽ đẹp và tính độc đáo của phương pháp và kỹ thuật giải chúng cũng như yêu cầu cao về tư duy cho người giải. Bất đẳng thức là một trong những dạng toán hay và khó đối với học sinh trong quá trình học tập cũng như trong các kỳ thi, trước hết là kỳ thi đại học mà hầu hết học sinh THPT đều phải vượt qua. Ngoài ra bất đẳng thức cũng là một dạng thường gặp trong các kỳ thi học sinh giỏi toán ở các cấp tỉnh, Quốc gia, Olympic khu vực và Olympic quốc tế. Các bài toán bất đẳng thức không những rèn luyện tư duy sáng tạo, trí thông minh mà còn đem lại say mê và yêu thích môn Toán của người học. Trong đề tài nghiên cứu khoa học này, tập thể lớp 10 Toán trường THPT Chuyên Quảng Bình xin trình bày một số vấn đề về bất đẳng thức, một số phương pháp chứng minh bất đẳng thức. Đề tài gồm các bài viết của các nhóm tác giả được trình bày dưới dạng các chuyên đề. [ads] 1. Bất đẳng thức AM – GM và ứng dụng 2. Bất đẳng thức Minkowski và ứng dụng 3. Bất đẳng thức Holder và ứng dụng 4. Bất đẳng thức Cauchy – Schwarz 5. Bất đẳng thức Chebyshev 6. Bất đẳng thức Muirhead 7. Phương pháp PQR 8. Phương pháp phân tích tổng bình phương S.O.S 9. Sử dụng phương pháp S.O.S trong chứng minh bất đẳng thức 10. Phương pháp dồn biến 11. Sử dụng tiếp tuyến trong việc chứng minh bất đẳng thức 12. Phương pháp nhân tử Lagrange
Phân dạng các bài toán bất đẳng thức và min - max - Mẫn Ngọc Quang
Tài liệu Phân dạng các bài toán bất đẳng thức và min – max của thầy giáo Mẫn Ngọc Quang gồm 160 trang là tuyển tập các bài toán bất đẳng thức và min – max đặc sắc được phân thành 13 dạng khác nhau dựa theo phương pháp giải. §1. Các bất đẳng thức phụ chứng minh bất đẳng thức §2. Bất đẳng thức ba biến đối xứng điểm rơi đẹp §3. Các bất đẳng thức phụ quen thuộc §4. Bất đẳng thức ba biến không đối xứng §5. Bất đẳng thức dồn về tổng a + b + c §6. Bất đẳng thức xử lý cụm x^2.y + y^2.z + z^2.x §7. Bất đẳng thức xử lý cụm xyz §8. Bất đẳng thức sử dụng tiếp tuyến §9. Bất đẳng thức sử dụng đặt ẩn phụ [ads] §10. Bất đẳng thức có biên bằng 0 §11. Bất đẳng thức sử dụng phương pháp thế §12. Bất đẳng thức Mincopxky §13. Bất đẳng thức có giả thiết đồng bậc §14. Bất đẳng thức đồng bậc §15. Phương pháp cố định biến số §16. Bất đẳng thức có hiệu a – b §17. Phương pháp lượng giác hóa và vectơ §18. Phương pháp ép biến