Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Can Lộc Hà Tĩnh

Nội dung Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Can Lộc Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Can Lộc - Hà Tĩnh Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Can Lộc - Hà Tĩnh Đề thi thử Toán vào lớp 10 năm 2021 - 2022 của phòng GD&ĐT Can Lộc - Hà Tĩnh bao gồm 5 bài toán tự luận trên 1 trang. Thời gian làm bài là 90 phút, kỳ thi diễn ra vào ngày 19 tháng 04 năm 2021. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số bài toán từ đề thi thử: Một phòng họp có 250 chỗ ngồi được chia thành từng dãy, mỗi dãy có số chỗ ngồi như nhau. Ban tổ chức phải kê thêm 3 dãy mỗi dãy kê thêm 1 chỗ để đủ chỗ cho 308 người. Hỏi lúc đầu phòng họp có bao nhiêu dãy ghế và mỗi dãy có bao nhiêu chỗ ngồi. Trong hệ tọa độ Oxy, có parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = mx + 2 (với m là tham số). Tìm m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ thỏa mãn điều kiện (x1 + 2)(x2 + 2) = 0. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Vẽ hai tiếp tuyến AB, AC với đường tròn (O). Gọi E là trung điểm của AC, F là giao điểm thứ hai của EB với đường tròn và K là giao điểm thứ hai của AF với đường tròn. Chứng minh rằng: a) Tứ giác ABOC là tứ giác nội tiếp đường tròn. b) Tam giác ABF đồng dạng với tam giác AKB và BF.CK = CF.BK. c) AE là tiếp tuyến của đường tròn ngoại tiếp tam giác ABF. Đây là những bài toán thử thách giúp học sinh ôn tập và rèn luyện kỹ năng giải toán trước kỳ thi chính thức. Chúc các em ôn thi hiệu quả!

Nguồn: sytu.vn

Đọc Sách

30 đề minh họa Toán (chung) vào lớp 10 năm 2024 - 2025 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 tài liệu tuyển tập 30 đề minh họa tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm.
Đề khảo sát Toán (chuyên) vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (dành cho thí sinh thi vào chuyên Toán và chuyên Tin học) tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho n là số nguyên dương và d là ước dương của 2 2 n chứng minh 2 n d không phải là số chính phương. + Tam giác nhọn không cân ABC nội tiếp đường tròn O đường cao AH H BC. Gọi K L lần lượt là hình chiếu vuông góc của điểm H trên các cạnh AB AC. Đường thẳng KL cắt đường tròn O tại hai điểm P Q (P và B cùng phía đối với AC). a) Chứng minh tứ giác BKLC nội tiếp đường tròn. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác PHQ. c) AH cắt lại đường tròn O tại TT A. Gọi D là hình chiếu vuông góc của H lên KL AD cắt đường tròn O tại MM A. Chứng minh 0 HMT 90. + Chứng minh rằng từ 6 số vô tỉ tùy ý ta có thể chọn được 3 số abc sao cho cả 3 số a bb cc a đều là số vô tỉ. Bài toán còn đúng không nếu ban đầu là 4 số?
Bộ đề ôn tập tuyển sinh vào lớp 10 môn Toán - Lê Trung Tuyến
Tài liệu gồm 255 trang, được biên soạn bởi thầy giáo Lê Trung Tuyến, tuyển tập 50 đề ôn tập tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết.
Đề kiểm tra Toán 9 thi vào 10 năm 2024 - 2025 đợt 1 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra rà soát chất lượng học sinh môn Toán 9 chuẩn bị thi vào lớp 10 năm học 2024 – 2025 đợt 1 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 thi vào 10 năm 2024 – 2025 đợt 1 phòng GD&ĐT Ứng Hòa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một thửa ruộng hình chữ nhật có chu vi là 300m. Tính diện tích của thửa ruộng biết rằng nếu giảm chiều dài đi 3 lần, tăng chiều rộng 2 lần thì chu vi của thửa ruộng không thay đổi. + Một thùng đựng sơn hình trụ có đường kính đáy là 16cm và chiều cao là 24cm. Tính diện tích vật liệu để tạo nên một vỏ thùng đựng sơn đó (cho biết phần mép nối không đáng kể và lấy pi ~ 3,14). + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2mx + 1 – m2 (m là tham số) và parabol (P): y = x2. a. Chứng minh với mọi giá trị m, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2. b. Tìm m để x1, x2 là số đo độ dài hai đường chéo của một hình thoi có chu vi 45.