Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Cẩm Thủy Thanh Hoá

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Cẩm Thủy Thanh Hoá Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 7 môn Toán năm 2022-2023 phòng GD ĐT Cẩm Thủy Thanh Hoá Đề giao lưu HSG lớp 7 môn Toán năm 2022-2023 phòng GD ĐT Cẩm Thủy Thanh Hoá Xin chào quý thầy cô giáo và các em học sinh lớp 7! Sytu xin giới thiệu đến quý vị đề giao lưu học sinh giỏi cấp trường môn Toán lớp 7 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Cẩm Thủy, tỉnh Thanh Hoá. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ Đề giao lưu HSG Toán lớp 7 năm 2022-2023 phòng GD&ĐT Cẩm Thủy - Thanh Hoá: Số $A$ được chia thành ba phần số tỉ lệ theo $231 : 546$. Biết rằng tổng các bình phương của ba số đó bằng $24309$. Tìm số $A$. Biết $f(x)$ chia cho $x-3$ thì dư $7$; chia cho $x-2$ thì dư $5$; chia cho $(x-3)(x-2)$ được thương là $3x$ và còn dư. Tìm $f(x)$. Cho tam giác $ABC$ có ba góc nhọn ($AB < AC$). Vẽ về phía ngoài tam giác $ABC$ các tam giác đều $ABD$ và $ACE$. Gọi $I$ là giao của $CD$ và $BE$, $K$ là giao của $AB$ và $DC$. a) Chứng minh rằng: $\triangle ADC = \triangle ABE$. b) Chứng minh rằng: $\angle AIC = 60^\circ$. c) Gọi $M$ và $N$ lần lượt là trung điểm của $CD$ và $BE$. Chứng minh rằng $\triangle AMN$ đều. d) Chứng minh rằng $IA$ là phân giác của góc $DIE$. Để xem đầy đủ và chi tiết hơn, quý thầy cô vui lòng tải file Word tại đường link sau.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi lớp 7 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên
Nội dung Đề giao lưu học sinh giỏi lớp 7 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề thi giao lưu học sinh giỏi Toán lớp 7 năm học 2017 - 2018 tại phòng Giáo dục và Đào tạo thành phố Thái Nguyên Đề thi giao lưu học sinh giỏi Toán lớp 7 năm học 2017 - 2018 tại phòng Giáo dục và Đào tạo thành phố Thái Nguyên Đề thi giao lưu học sinh giỏi Toán lớp 7 năm học 2017-2018 do phòng Giáo dục và Đào tạo thành phố Thái Nguyên tổ chức nhằm tạo điều kiện cho học sinh năng động, sáng tạo và giỏi môn Toán có cơ hội thể hiện tài năng của mình. Đề thi sẽ được thi đấu trong không khí lễ hội, vui vẻ và hứa hẹn mang lại những trải nghiệm thú vị cho các thí sinh tham gia. Đây cũng là dịp để các giáo viên, phụ huynh và các em học sinh cùng nhau tận hưởng niềm vui học tập và trau dồi kiến thức. Mục tiêu của đề thi là khuyến khích sự tích cực, cống hiến của học sinh giỏi, giúp họ phát triển toàn diện về kiến thức và kỹ năng, đồng thời tạo ra cơ hội giao lưu, học hỏi và kết nối giữa các em học sinh trong cộng đồng học đường.
Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc
Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 7 môn Toán năm 2016-2017 phòng GD&ĐT Yên Lạc Vĩnh Phúc Đề giao lưu HSG lớp 7 môn Toán năm 2016-2017 phòng GD&ĐT Yên Lạc Vĩnh Phúc Xin chào quý thầy, cô và các em học sinh lớp 7. Đây là đề giao lưu HSG Toán lớp 7 năm học 2016-2017 của phòng GD&ĐT Yên Lạc - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn luyện hiệu quả. Dưới đây là vài câu hỏi mẫu trong đề giao lưu: Cho p và q là hai số nguyên tố lớn hơn 3 và thoả mãn p = q + 2. Tìm số dư khi chia p + q cho 12. Cho A là một tập hợp gồm 10 chữ số. B là một tập con của A gồm 5 phần tử. Chứng minh rằng trong tập hợp các số có dạng x + y, với x, y là hai phần tử phân biệt thuộc B, có ít nhất 2 số có cùng chữ số hàng đơn vị. Với mỗi số nguyên dương a, kí hiệu S(a) là số chữ số của a. Tìm số nguyên dương n để là số chẵn. Hãy sử dụng đề giao lưu này để rèn luyện kỹ năng Toán của mình và chuẩn bị tốt cho các kì thi sắp tới. Chúc các em thành công!
Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa
Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Xin chào đến với đề giao lưu HSG Toán lớp 7 năm 2016 - 2017 của phòng GD&ĐT Vĩnh Lộc - Thanh Hóa! Đề thi này sẽ cung cấp cho các em học sinh lớp 7 một cơ hội để thử thách kiến thức và kỹ năng Toán của mình. Trong đề thi này, chúng ta sẽ gặp phải những bài toán phức tạp như phân giác của tam giác, tính độ dài cạnh của tam giác khi biết độ dài 3 đường cao, và chứng minh rằng một số là vô tỉ. Ví dụ: Cho tam giác ABC (AB < AC, góc B = 60 độ). Hai phân giác AD và CE của ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. Hãy tính AIC và độ dài cạnh AK biết PK = 6cm, AH = 4 cm. Chứng minh IDE cân. Hãy cố gắng giải quyết và hiểu rõ từng bước để trả lời các câu hỏi này. Hãy học tập và chuẩn bị tốt nhất cho đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 này. Chúc các em thành công!
Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình
Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Chúng tôi xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 của phòng GD&ĐT thành phố Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các em tham khảo. Chi tiết đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình: 1. Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Hãy tìm số công nhân của các nhóm. 2. Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 2.1. Tính số đo góc EOF và chứng minh OP = OQ. 2.2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. 3. Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 3.1. Chứng minh ABN = AMC và BN = CM. 3.2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN. Hãy cùng tham gia và thử sức với các bài toán thú vị này để nâng cao kiến thức và kỹ năng Toán của mình nhé!