Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2020 2021 trường THCS Lê Ngọc Hân Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 trường THCS Lê Ngọc Hân Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội Ngày 24 tháng 04 năm 2021, học sinh trường THCS Lê Ngọc Hân đã trải qua kỳ thi khảo sát chất lượng môn Toán lớp 9. Đề thi gồm 5 bài toán dạng tự luận, với thời gian làm bài là 90 phút. Đề bài không chỉ đơn thuần là những câu hỏi toán học mà còn thách thức tư duy sáng tạo của các em. Trong đó, một bài toán yêu cầu học sinh giải bằng cách lập phương trình hoặc hệ phương trình. Một đám đất hình chữ nhật có chu vi và diện tích ban đầu. Học sinh cần tính toán để tìm ra diện tích mảnh vườn ban đầu sau khi thay đổi kích thước. Bài toán thực tế khác yêu cầu học sinh tính toán mực nước sẽ dâng lên bao nhiêu sau khi thêm đất nặn vào cốc chứa nước. Học sinh cần áp dụng kiến thức về hình học không gian và tròn để giải quyết vấn đề này. Ngoài ra, đề KSCL còn đưa ra bài toán liên quan đến hệ tọa độ và đường parabol. Học sinh cần tìm giá trị của m để đường thẳng cắt parabol hoặc tìm tọa độ giao điểm giữa đường thẳng và parabol. Đề thi Toán lớp 9 năm 2020 – 2021 tại trường THCS Lê Ngọc Hân không chỉ đánh giá kiến thức mà còn khuyến khích học sinh áp dụng kiến thức vào thực tế và rèn luyện kỹ năng giải quyết vấn đề. Đây là cơ hội để các em thể hiện sự sáng tạo và logic trong quá trình giải bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 2 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018 – 2019, đề thi gồm 05 bài toán tự luận, học sinh làm bài thi Toán trong 120 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán đối với học sinh lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đồng thời giúp học sinh rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Do đó đến B sớm hơn 1 giờ so với dự định. Tính quãng đường AB? [ads] + Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Tìm m? + Cho nửa đường tròn tâm (O), đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O). Đường thẳng đi qua điểm H và vuông góc với AD cắt nửa đường tròn (O) tại C. Trên cung BC lấy D bất kì (D khác B và C). Tiếp tuyến tại D của nửa đường tròn cắt HC tại E. Gọi I là giao điểm của AD và HC. a) Chứng minh tứ giác HBDI nội tiếp đường tròn. b) Chứng minh tam giác DEI cân. c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD. Chứng minh góc ABF có số đo không đổi khi D thay đổi trên cung BC (D khác B và C).
Đề kiểm tra Toán 9 tháng 22019 trường THCS Thống Nhất - Hà Nội
Đề khảo sát chất lượng Toán 9 năm 2019 sở GDĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em nội dung đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh, kỳ thi được diễn ra vào ngày 23 tháng 02 năm 2019 nhằm đánh giá chất lượng môn Toán của học sinh lớp 9, đồng thời giúp các em rèn luyện thường xuyên để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh gồm hai phần: phần trắc nghiệm gồm 06 câu, chiếm 30% số điểm, phần tự luận gồm 04 câu, chiếm 70% số điểm, học sinh làm bài thi môn Toán trong 90 phút, đây cũng sẽ là cấu trúc đề Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 mà sở Giáo dục và Đào tạo Bắc Ninh sẽ sử dụng. [ads] Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh : + Một doanh nghiệp tư nhân chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Honda Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất? Tại sao? + Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R. Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D. a) Chứng minh rằng tam giác ABC vuông. b) Chứng minh rằng DC là tiếp tuyến của đường tròn (O). c) Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng. + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. a) Tìm m để d đi qua điểm M(1;2). b) Tìm m để d cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác OAB cân.
Đề thi KSCL Toán 9 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Đề thi KSCL Toán 9 năm học 2018 – 2019 trường THCS Đại Áng – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài kiểm tra khảo sát là 90 phút, kỳ thi được diễn ra vào ngày 26 tháng 01 năm 2019. Trích dẫn đề thi KSCL Toán 9 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Một mảnh đất hình chữ nhật có chu vi 80m. Nếu tăng chiều dài thêm 3m, tăng chiều rộng thêm 5m thì diện tích của mảnh đất tăng thêm 195m. Tính chiều dài và chiều rộng của mảnh đất. [ads] +  Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R. Từ P kẻ tiếp tuyến tiếp xúc với (O) tại M. a) Chứng minh rằng 4 điểm A, P, M, O cùng nằm trên một đường tròn. b) Chứng minh BM // OP. c) Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành. d) Biết AN cắt OP tại K, PM cắt ON tại I, PN và OM kéo dài cắt nhau tại J. Chứng minh 3 điểm I, J, K thẳng hàng.