Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Xin chào quý thầy cô giáo và các em học sinh lớp 9. Sytu hân hạnh giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Thanh Hóa: Cho tam giác nhọn ABC có AB = AC và nội tiếp đường tròn (O). Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC và E là hình chiếu vuông góc của điểm B lên đường thẳng AO. Chứng minh tứ giác AEHB là tứ giác nội tiếp. Chứng minh đường thẳng HE vuông góc với đường thẳng AC. Gọi M là trung điểm của cạnh BC. Tính tỉ số ME/MH. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = mx + 2/(m^2-1) (m là tham số). Tìm m để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2. Cho ba số thực dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz + 3. Tìm giá trị nhỏ nhất của biểu thức (x^2 + y^2 + z^2)/((x + y)(y + z)(z + x)). Mong rằng đề thi này sẽ giúp các em thí sinh chuẩn bị tốt cho kỳ thi quan trọng sắp tới. Chúc các bạn học tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán (chuyên) vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (chuyên) ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho các số thực dương x y thỏa mãn 2 x xy 3 10 và 2 y xy 6. Tính A x y 3. + Cho tam giác ABC nhọn có AB AC nội tiếp đường tròn O. Phân giác trong của BAC cắt BC tại D và cắt O tại Q Q A. Từ D dựng DE DF lần lượt vuông góc với AC AB E AC F AB. Gọi M là trung điểm của BC, tia QM cắt O tại giao điểm thứ hai là P. a) Chứng minh QM QP QD QA. b) Gọi N là giao điểm của PD và EF. Chứng minh MN song song với AD. c) Dựng đường kính AK của O. Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm R R N. Chứng minh các điểm P D R thẳng hàng. + Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu.
Đề khảo sát Toán vào 10 năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; đề thi chung dành cho tất cả các thí sinh; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Cho tam giác ABC có ba góc nhọn. Hai đường cao của tam giác đó là AD, BE cắt nhau tại H với D BC E AC. 1. Chứng minh CDHE là tứ giác nội tiếp một đường tròn, tìm vị trí tâm I của đường tròn đó. 2. Chứng minh HA HD HB HE. 3. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BDE (với I là tâm đường tròn ngoại tiếp tứ giác CDHE). + Trong mặt phẳng tọa độ Oxy, đường thẳng d y ax b đi qua điểm M 1 2 và song song với đường thẳng 2 3 d y x. Tìm các hệ số a và b. + Cho ba số dương a b c thỏa mãn 2 2 2 a b c 9. Tìm giá trị nhỏ nhất của biểu thức a b c 2 5 P bc ca ab.
Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tham khảo kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; đề thi hình thức tự luận, gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hai lớp 9A và 9B có tổng số học sinh là 78. Trong một năm học mỗi học sinh lớp 9A đã sử dụng 3 quyển tập cho môn Toán, mỗi học sinh lớp 9B đã sử dụng 2 quyển tập cho môn Toán. Tính số học sinh của mỗi lớp, biết rằng tổng số quyển tập cho môn Toán mà hai lớp đã sử dụng trong một năm học là 194 quyển. + Cho tam giác ABC có ba góc nhọn (AB < AC) và có đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC của tam giác ABC lần lượt tại E và F. Chứng minh điểm B thuộc đường tròn ngoại tiếp tam giác EFC. + Cho hình vuông ABCD nội tiếp đường tròn (O) có đường kính bằng 5. Gọi E là điểm trên đoạn thẳng BD sao cho BE > ED, đường thẳng AE cắt (O) tại F và đường thẳng BF cắt AC tại G. Tính diện tích tứ giác ABGE.
Đề Toán định hướng vào 10 năm 2023 - 2024 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi môn Toán định hướng vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 25 tháng 02 năm 2023. Trích dẫn Đề Toán định hướng vào 10 năm 2023 – 2024 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho hai đường thẳng (d1): y = (m − 2)x + 3 (với m khác 2) và (d2): y = 3x + m. Tìm m để hai đường thẳng (d1) và (d2) song song với nhau. + Tìm m để đường thẳng (d1) cắt Ox tại A, cắt Oy tại B sao cho tam giác OAB vuông cân. + Cho đường tròn (O) đường kính MN = 2R. Trên đoạn thẳng OM lấy điểm F (F khác O và M). Dây PA vuông góc với MN tại F. Trên cung nhỏ NP lấy điểm D bất kỳ (D khác N, D khác P), MD cắt PF tại I, gọi E là giao điểm của NP với tiếp tuyến tại M của (O). 1. Chứng minh rằng: Bốn điểm N, D, I, F cùng thuộc một đường tròn. 2. Chứng minh: MI.MD = PN.PE. 3. Khi F là trung điểm của OM và D chạy trên cung nhỏ NP. Tìm vị trí điểm D để DN + DP lớn nhất. Tìm giá trị lớn nhất đó.