Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 1 Toán 11 năm 2019 - 2020 trường Thanh Miện - Hải Dương

Chủ Nhật ngày 10 tháng 11 năm 2019, trường THPT Thanh Miện, tỉnh Hải Dương tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán 11 định kỳ. Đề thi KSCL lần 1 Toán 11 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương có mã đề 131, đề gồm 05 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi có đáp án. Trích dẫn đề thi KSCL lần 1 Toán 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Một trường đại học tổ chức thi vấn đáp tiếng anh cho sinh viên của trường. Có 15 đề thi vấn đáp, trong đó 6 đề có nội dung về giáo dục, 4 đề có nội dung về kinh tế và 5 đề có nội dung về thể thao. Một sinh viên rút thăm bất kỳ một đề để trả lời. Tìm xác suất để sinh viên đó rút được đề có nội dung về giáo dục? + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt. Trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Xác xuất để ba điểm được chọn tạo thành một tam giác là? [ads] + Cho tập A có n phần tử (n ∈ N*), điều nào sau đây là sai? A. Số các chỉnh hợp chập k của n phần tử là nAk = n!/(n – k)! với k ≤ n, k thuộc N*. B. Số các tổ hợp chập k của n phần tử là nCk = n!/k!(n – k)! với k ≤ n, k thuộc N. C. Số các hoán vị của (n + 1) phần tử là 1.2.3…(n – 2)(n – 1)n. D. Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử. Vì vậy Pn = nAn. + Trường THPT Thanh Miện, tỉnh Hải Dương có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh? + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;6), B(-1;-4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5). Tìm khẳng định đúng: A. ABCD là hình thoi. B. ABCD là hình bình hành. C. Bốn điểm A, B, C, D thẳng hàng. D. ABCD là hình thang.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát lần 1 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Ngày … tháng 10 năm 2019, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất dành cho học sinh khối 11, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát lần 1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 001, đề gồm 50 câu trắc nghiệm thuộc chương trình Toán lớp 10 và chương trình Toán lớp 11 đã học, thời gian làm bài 90 phút. Trích dẫn đề khảo sát lần 1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Một cửa hàng mua sách từ nhà xuất bản với giá 3USD/ cuốn. Cửa hàng bán sách với giá 15USD/ cuốn, tại giá bán này mỗi tháng cửa hàng sẽ bán được 200 cuốn. Cửa hàng có kế hoạch giảm giá để kích thích sức mua và họ ước tính rằng cứ giảm đi 1 USD/ cuốn thì mỗi tháng sẽ bán nhiều hơn 20 cuốn. Hỏi rằng cửa hàng nên bán sách với giá bao nhiêu một cuốn để thu được lợi nhuận một tháng là nhiều nhất? [ads] + Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Điểm G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng EG và mp (ACD) là: A. Điểm F. B. Giao điểm của đường thẳng EG và CD. C. Giao điểm của đường thẳng EG và AC. D. Giao điểm của đường thẳng EG và AF. + Trong mặt phẳng tọa độ Oxy, cho hình thang cân ABCD (AB // CD và AB > CD) có AD = DC, D(3;3). Đường thẳng AC có phương trình x – y – 2 = 0, đường thẳng AB đi qua M(-1;-1). Biết phương trình đường thẳng BC có dạng ax + by + c = 0 với a, b, c thuộc Z và a, b, c đôi một nguyên tố cùng nhau, c < 0. Tính a + b + c? File WORD (dành cho quý thầy, cô):
Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường THPT Lương Tài 2 Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường THPT Lương Tài 2 Bắc Ninh Bản PDF Nhằm mục đích kiểm tra đánh giá giai đoạn giữa học kỳ 1, Chủ Nhật ngày 27 tháng 10 năm 2019, trường THPT Lương Tài số 2, tỉnh Bắc Ninh tổ chức kiểm tra khảo sát chất lượng lần thứ nhất môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường THPT Lương Tài 2 – Bắc Ninh với 50 câu trắc nghiệm thuộc các nội dung Toán lớp 11 đã học, đề gồm 04 trang, thời gian làm bài 90 phút, đề kiểm tra có đáp án. Trích dẫn đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường THPT Lương Tài 2 – Bắc Ninh : + Đường tròn sẽ không thay đổi bán kính khi ta thực hiện liên tiếp các phép nào sau đây: A. Thực hiện phép đồng dạng tỉ số k = 2 rồi thực hiện liên tiếp phép dời hình bất kỳ. B. Thực hiện phép quay rồi thực hiện liên tiếp phép đồng dạng bất kỳ. C. Thực hiện phép vị tự tỉ số k = -1 rồi thực hiện liên tiếp phép đồng dạng tỉ số k = 2. D. Thực hiện phép dời hình bất kỳ rồi thực hiện liên tiếp phép vị tự tỉ số k = -1. [ads] + Cho 10 câu hỏi trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta cấu tạo thành các đề thi. Biết rằng trong đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu hỏi bài tập. Hỏi có thể tạo được bao nhiêu đề như trên? + Cho đường tròn (C): x^2 + y^2 = 2. Phép vị tự tâm I(a;b) tỉ số k = -2 biến đường tròn (C) thành đường tròn (T) sao cho (C) và (T) tiếp xúc ngoài. Tìm tất cả các giá trị tham số m để trên đường thẳng x – y + m = 0 tồn tại duy nhất tâm vị tự I như trên. File WORD (dành cho quý thầy, cô):
Đề kiểm tra khảo sát nửa học kì 1 (HK1) lớp 11 môn Toán trường THPT Phan Huy Chú Hà Nội
Nội dung Đề kiểm tra khảo sát nửa học kì 1 (HK1) lớp 11 môn Toán trường THPT Phan Huy Chú Hà Nội Bản PDF Ngày …/10/2019, trường THPT Phan Huy Chú – Đống Đa – Hà Nội tổ chức kiểm tra khảo sát nửa kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra khảo sát nửa kỳ 1 Toán lớp 11 trường THPT Phan Huy Chú – Hà Nội gồm 03 trang với 25 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề kiểm tra khảo sát nửa kỳ 1 Toán lớp 11 trường THPT Phan Huy Chú – Hà Nội : + Trong kì thi học sinh giỏi có 10 học sinh đạt tối đa điểm môn Toán trong đó có 4 học sinh nam và 6 học sinh nữ. Nhà trường muốn chọn một nhóm 5 học sinh trong 10 học sinh trên để tham dự buổi lễ tuyên dương khen thưởng. Tính số cách chọn một nhóm gồm 5 học sinh mà có cả nam và nữ và số học sinh nam ít hơn số học sinh nữ. [ads] + Từ thành phố A đến thành phố B có 3 con đường, từ thành phố B đến thành phố C có 4 con đường, và từ thành phố C đến D có 5 con đường. Hỏi có bao nhiêu cách đi từ thành phố A đến D (biết rằng để đi từ thành phố A đến D thì bắt buộc phải qua thành phố B, C và các thành phố chỉ đi qua 1 lần). + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB = 3a, AD = CD = a. Mặt bên SAB là tam giác cân đinh S và SA = 2a, mặt phẳng (α) song song với (SAB) cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. a) Chứng minh MN // (SCD). b) Đặt x = AM (0 < x < a). Tính chu vi MNPQ theo x, a.
Đề khảo sát lớp 11 môn Toán chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc
Nội dung Đề khảo sát lớp 11 môn Toán chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc Bản PDF Nhằm giúp các em học sinh khối 11 của nhà trường ôn lại các kiến thức môn Toán đã học từ năm học trước, để có sự chuẩn bị tốt nhất cho năm học mới, trường THPT Liễn Sơn, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát kiến thức đầu năm Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán lớp 11 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc có mã đề 001, đề thi gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm chiếm 3 điểm với 12 câu, phần tự luận chiếm 7 điểm với 5 câu, thời gian làm bài thi 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán lớp 11 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc : + Trong mặt phẳng Oxy, cho hình thang ABCD với hai đáy là AB và CD biết B(3;3), C(5;-3). Giao điểm I của hai đường chéo nằm trên đường thẳng 2x + y – 3 = 0. Xác định tọa độ các đỉnh còn lại của hình thang ABCD để CI = 2BI, tam giác ABC có diện tích bằng 12, điểm I có hoành độ dương và điểm A có hoành độ âm. + Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD. Đẳng thức nào sau đây là đẳng thức sai? + Cho mệnh đề “với mọi x thuộc R: x^2 – x + 7 < 0”. Hỏi mệnh đề nào là mệnh đề  phủ định của mệnh đề trên?