Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập các định lí và cách chứng minh bất đẳng thức - Nguyễn Ngọc Tiến

Tài liệu gồm 88 trang tuyển tập các định lý và cách chứng minh bất đẳng thức do tác giả Nguyễn Ngọc Tiến biên soạn. Giới thiệu: Bất đẳng thức được sử dụng rộng rãi trong các lĩnh lực Toán học. Mục đích của tập sách hướng dẫn này nêu lên các cách chứng minh cơ bản trong lý thuyết bất đẳng thức. Đọc giả sẽ gặp các bất đẳng thức cổ điển như bất đẳng thức Schur, định lý Muirhead, bất đẳng thức Cauchy-Schwarz, bất đẳng thức trung bình lũy thừa, bất đẳng thức AM – GM và định lý Holder. Gửi tới các em học sinh – sinh viên: Các đọc giả của tôi là các em học sinh các trường trung học hay các sinh viên đang theo học các trường đại học. Các cách nêu ra trong tập sách này chỉ là các mẹo nhỏ của một “khối băng khổng lồ bất đẳng thức”. Các em học sinh, sinh viên nên tìm ra cách giải cho riêng mình để “xử lý tốt” các bài toán đa dạng khác. Nhà toán học đại tài Hungary – Paul Erdos đã thú vị khi nói rằng Thượng đế có một quyển sách siêu việt với mọi định lý và cách chứng minh hay nhất. Tôi khuyến khích các độc giả gửi tôi các bài giải hay, đầy sáng tạo của riêng mình của các bài toán trong tập sách này. [ads] Mục lục Chương 1: Bất đẳng thức Hình học 1.1 Phép thế Ravi 1.2 Các phương pháp lượng giác 1.3 Các ứng dụng của Số Phức Chương 2: Bốn cách chứng minh cơ bản 2.1 Phép thay thế lượng giác 2.2 Phép thay thế Đại Số 2.3 Định lý hàm tăng 2.4 Thiết lập cận mới Chương 3: Thuần nhất hóa và Chuẩn hóa 3.1 Thuần nhất hóa 3.2 Bất đẳng thức Schur và Định lý Muirhead 3.3 Chuẩn hóa 3.4 Bất đẳng thức Cauchy-Schwarz và Bất đẳng thức Holder Chương 4: Tính lồi  4.1 Bất đẳng thức Jensen 4.2 Các trung bình lũy thừa 4.3 Bất đẳng thức Trội 4.4 Bất đẳng thức áp dụng đường thẳng Chương 5: Bài Toán 5.1 Các bất đẳng thức đa biến 5.2 Các bài toán trong hội thảo Putnam

Nguồn: toanmath.com

Đọc Sách

Bài toán bất đẳng thức - GTLN - GTNN của biểu thức - Nguyễn Hữu Hiếu
Tài liệu gồm 38 trang hướng dẫn giải một số dạng toán bất đẳng thức và GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất) của biểu thức. Tài liệu được biên soạn bởi thầy Nguyễn Hữu Hiếu. Nội dung tài liệu : 1. Một số bất đẳng thức cơ bản thường sử dụng. 2. Bất đẳng thức đối xứng hai biến. 3. Một số bài toán cần dùng bất đẳng thức phụ. 4. Bất đẳng thức đối xứng ba biến. 5. Bất đẳng thức ba biến không đối xứng.
Các phương pháp chứng minh bất đẳng thức
Tài liệu gồm 702 hướng dẫn các kỹ thuật và phương pháp chứng minh bất đẳng thức (Đại số 10 chương 4) kèm các ví dụ và bài tập bất đẳng thức có lời giải chi tiết. Các phương pháp chứng minh bất đẳng thức được đề cập trong tài liệu: Chương I . MỘT SỐ PHƯƠNG PHÁP GIẢI TOÁN + Chủ đề 1. Kỹ thuật biến đổi tương đương + Chủ đề 2. Sử dụng các tính chất của tỉ số, tính chất giá trị tuyệt đối và tính chất của tam thức bậc hai trong chứng minh bất đẳng thức 1. Sử dụng tính chất của tỉ số 2. Sử dụng tính chất giá trị tuyệt đối 3. Sử dụng tính chất tam thức bậc hai. + Chủ đề 3. Chứng minh bất đẳng thức bằng phương pháp phản chứng + Chủ đề 4. Chứng minh các bất đẳng thức về tổng, tích của dãy số – Phương pháp quy nạp + Chủ đề 5 Kỹ thuật sử dụng bất đẳng thức CAUCHY 1. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình cộng sang trung bình nhân 2. Kỹ thuật chọn điểm rơi trong đánh giá từ trung bình nhân sang trung bình cộng. 3. Kỹ thuật ghép cặp trong bất đẳng thức Cauchy 4. Kỹ thuật thêm bớt 5. Kỹ thuật Cauchy ngược dấu 6. Kỹ thuật đổi biến số + Chủ đề 6 Kỹ thuật sử dụng bất đẳng thức BUNHIACOPXKI 1. Kỹ thuật chọn điểm rơi 2. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng cơ bản 3. Kỹ thuật sử dụng bất đẳng thức Bunhiacopxki dạng phân thức 4. Kỹ thuật thêm bớt 5. Kỹ thuật đổi biến trong bất đẳng thức Bunhiacopxki [ads] Chương II . MỘT SỐ KỸ THUẬT GIẢI TOÁN ĐẶC SẮC + Chủ đề 7. Ứng dụng nguyên lý DIRICHLET trong chứng minh bất đẳng thức + Chủ đề 8. Phương pháp hệ số bất định trong chứng minh bất đẳng thức + Chủ đề 9. Ứng dụng một hệ quả của bất đẳng thức SCHUR + Chủ đề 10. Ứng dụng của đạo hàm trong chứng minh bất đẳng thức và bài toán tìm cực trị 1. Dồn biến nhờ vận dụng kỹ thuật sử dụng các bất đẳng thức kinh điển 2. Dồn biến nhờ kết hợp với kỹ thuật đổi biến số 3. Dồn biến nhờ kết hợp với kỹ thuật sắp thứ tự các biến 4. Phương pháp tiếp tuyến 5. Khảo sát hàm nhiều biến số 6. Kết hợp với việc sử dụng Bổ đề 7. Vận dụng kỹ thuật dồn biến cổ điển Chương III . TUYỂN CHỌN MỘT SỐ BÀI TOÁN BẤT ĐẲNG THỨC + Chủ đề 11. Một số bất đẳng thức hay và khó + Chủ đề 12. Một số bất đẳng thức trong các đề thi học sinh giỏi, thi TSĐH và tuyển sinh lớp 10 chuyên toán
Sử dụng phương pháp nhân tử Lagrange để giải quyết một số bài toán cực trị
Trong ngành tối ưu hóa, phương pháp nhân tử Lagrange (đặt theo tên của nhà toán học Joseph Louis Lagrange) là một phương pháp để tìm cực tiểu hoặc cực đại địa phương của một hàm số chịu các điều kiện giới hạn. Phương pháp này chúng ta sẽ được học trong chương trình toán cao cấp của bậc đại học. Trên Internet đã có một vài bài viết nói về phương pháp này để chứng minh bất đẳng thức nhưng tuy nhiên vẫn còn tương đối nhiều bạn vẫn chưa biết đến phương pháp này. Do đó ở bài viết này mình sẽ đưa ra một ứng dụng khác của nó ngoài việc chứng minh bất đẳng thức ra thì nó còn là một công cụ khá là hữu hiệu giải quyết nhanh một số bài toán cực trị trong đề thi thử THPT Quốc Gia hiện nay đồng thời cũng giúp ích cho một số bạn còn hơi yếu về bất đẳng thức tham khảo!
Chuyên đề chứng minh bất đẳng thức một biến - Nguyễn Minh Tuấn
Bất đẳng thức một biến tuy không phải là một phần toán khó như bất đẳng thức hai biến và ba biến nhưng tuy nhiên đây cũng là một phần toán khá hay và quan trọng đối với học sinh. Ta thường bắt gặp những bài bất đẳng thức một biến này khi đang giải phương trình, hệ phương trình vô tỷ mà cần chứng minh phần còn lại vô nghiệm. Hay là một bài bất đẳng thức 3 biến ta đã đưa về một bất đẳng thức 1 biến mà còn loay hoay chưa biết xử ló thế nào? Vì thế nên trong bài viết này tôi sẽ giúp các bạn giải quyết được một phần nào những câu hỏi đó! Bên cạnh đó cùng với sự phát triển của công cụ là máy tình điện tử trong sáng tạo các phương pháp giải toán, tôi cũng sẽ giới thiệu cho bạn đọc một số các cách giải toán bằng máy tính CASIO hay VINACAL, nhưng tuy nhiên chỉ là những định hướng cơ bản thôi tránh gây lạm dụng công cụ này quá sẽ làm mất đi những vẻ đẹp của bài toán, chúng ta không học cách bấm máy, mà chúng ta học để sáng tạo cách bấm máy và cách tư duy cần thiết cho một bài toán. [ads] Trong bài viết nhỏ này tôi cũng đã sưu tầm được kha khá những cách chứng minh hay từ nguồn tài nguyên Internet và các anh chị trên các diễn đàn toán, đồng thời cũng tham khảo cách làm của một số thầy cô, những cuốn sách tham khảo hay. Phần 1. Các bài toán bất đẳng thức 1 biến I. Các bài toán II. Hướng dẫn giải Phần 2. Phụ lục – một số cách chứng minh bất đẳng thức một biến không chứa căn I. Phương trình bậc 4 1. Sử dụng tính chất tam thức bậc 2 2. Sử dụng đạo hàm II. Phương trình bậc 6 III. Cách phân tích riêng cho hai dòng máy đặc biệt IV. Chứng minh trên khoảng V. Chứng minh trên đoạn