Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 - 2019 sở GDĐT Bình Định

Thứ Hai ngày 18 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2018 – 2019, kỳ thi nhằm tuyển chọn các em học sinh lớp 9 giỏi môn Toán để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 9 của tỉnh Bình Định, tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, các em được chọn chính là những tấm gương tiêu biểu trong phong trào học tập của tỉnh nhà. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 – 2019 sở GD&ĐT Bình Định gồm 04 bài toán tự luận, học sinh làm bài thi trong thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2018 – 2019 sở GD&ĐT Bình Định : + Trong mặt phẳng cho 8073 điểm mà diện tích của mọi tam giác với các đỉnh là các điểm đã cho không lớn hơn 1. Chứng minh rằng trong số các điểm đã cho có thể tìm được 2019 điểm nằm trong hoặc trên cạnh của một tam giác có diện tích không lớn hơn 1. [ads] + Cho tam giác nhọn ABC vuông cân tại A. Gọi D là trung điểm của cạnh BC. Lấy điểm M bất kỳ trên đoạn AD (M không trùng với A). Gọi N, P theo thứ tự là hình chiếu vuông góc của M trên các cạnh AB, AC và H là hình chiếu vuông góc của N lên đường thẳng PD. a) Chứng minh rằng: AH vuông góc với BH. b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I. Chứng minh ba điểm H, N, I thẳng hàng. + Cho tam giác ABC nội tiếp đường tròn (O), đường cao AH. Gọi M là giao điểm của AO và BC. Chứng minh rằng HB/HC + MB/MC ≥ 2AB/AC. Dấu bằng xảy ra khi nào?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 12 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Cho đường tròn (I;r) có hai bán kính IE, IF vuông góc với nhau. Kẻ hai tiếp tuyến với đường tròn (I) tại E và F, cắt nhau tại A. Trên tia đối của tia EA lấy điểm B sao cho EB > r, qua B kẻ tiếp tuyến thứ hai với đường tròn (I). D là tiếp điểm, BD cắt tia AF tại C. Gọi K là giao điểm của AI với FD. 1) Chứng minh hai tam giác IAB và FAK đồng dạng. 2) Qua A kẻ đường thẳng vuông góc với BC, cắt FD tại P. Gọi M là trung điểm của AB, MI cắt AC tại Q. Chứng minh tam giác APQ là tam giác cân. 3) Xác định vị trí của điểm B để chu vi tam giác AMQ đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo r. + Cho a, b, c là các số thực đôi một khác nhau thỏa mãn 3 3 3 a a b b c c 1 3 1 3 1 3. Tính giá trị biểu thức 2 2 2 Q a b c. + Cho các số thực dương x, y, z thỏa mãn 2 2 x y xyz xy yz zx 4 2. Tính giá trị lớn nhất của biểu thức P x y z 1 1.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT Nam Định; đề thi gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Nam Định : + Trên đường tròn (O) lấy ba điểm A, B, C sao cho tam giác ABC nhọn. Gọi AD, BE, CF là các đường cao của tam giác ABC; đường thẳng EF cắt đường thẳng BC tại P. Qua D kẻ đường thẳng song song với đường thẳng EF cắt đường thẳng AC và AB lần lượt tại Q và R, M là trung điểm của BC. 1) Chứng minh tứ giác BQCR là tứ giác nội tiếp. 2) Chứng minh hai tam giác EPM và DEM đồng dạng. 3) Giả sử BC là dây cung cố định không đi qua tâm O, A di động trên cung lớn BC của đường tròn (O). Chứng minh đường tròn ngoại tiếp tam giác PQR luôn đi qua một điểm cố định. + Cho 2021 số tự nhiên từ 4 đến 2024 trên bảng, mỗi lần thay một hoặc một vài số bởi tổng các chữ số của nó cho đến khi trên bảng chỉ còn lại các số từ 1 đến 9. Hỏi cuối cùng, trên bảng có bao nhiêu số 3, bao nhiêu số 7? + Cho các số thực dương x, y, z thỏa mãn 3 3 3 x y z 24. Tìm giá trị nhỏ nhất của biểu thức 2 2 8 1 xyz x y z M xy yz zx xy yz zx.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT Ninh Bình; đề thi gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn tâm O bán kính R. Dây cung BC cố định, không đi qua tâm O. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I, H lần lượt là trung điểm của BC và MN, BC cắt MN tại K. 1. Chứng minh bốn điểm O, M, N, I cùng thuộc một đường tròn và HK là tia phân giác của BHC. 2. Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở E. Chứng minh M, N, E thẳng hàng. 3. Đường thẳng ∆ qua điểm M và vuông góc với đường thẳng ON, cắt đường tròn (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để tứ giác AMPN là hình bình hành. + Tìm các số nguyên x, y thoả mãn: 2 y x 5x 7 3. + Cho một bảng ô vuông m x n (gồm m dòng và n cột). Cho quy tắc tô màu bảng ô vuông như sau: Mỗi ô vuông đơn vị được tô bằng màu đỏ hoặc màu xanh sao cho bất kì bảng ô vuông 2 x 3 hoặc 3 x 2 nào cũng có đúng hai ô được tô màu đỏ. a) Hãy chỉ ra một cách tô màu theo quy tắc trên cho bảng ô vuông 4 x 6 (Điền chữ Đ vào ô được tô màu đỏ, chữ X vào ô được tô màu xanh). b) Người ta đã tô bảng ô vuông 2021 x 2022 theo quy tắc trên. Hỏi bảng ô vuông này có bao nhiêu ô được tô màu đỏ?
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Dương
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho 40 số nguyên dương thay đổi sao cho có tổng bằng 58. Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng các bình phương của chúng. + Giả sử ba số thực a, b, c thỏa mãn điều kiện a > 0, bc = 3a, a + b + c = abc. Chứng minh rằng: a21 + 213. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K L lần lượt là hình chiếu vuông góc của E, F trên BC. Giả sử FK cắt EL tại điểm J. Gọi H là hình chiếu vuông góc của J trên BC. a) Chứng minh rằng HJ là phân giác của góc EHF. b) Ký hiệu S1, S2 lần lượt là diện tích của tứ giác BFJL và CEJK. Chứng minh rằng: BP2 V 5 CE. c) Gọi D là trung điểm cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng.