Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 vòng 2 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 vòng 2 năm học 2022 – 2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 10 vòng 2 năm 2022 – 2023 trường THPT Nguyễn Gia Thiều – Hà Nội : + Bài toán sản xuất: Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau: Nhóm Số máy trong mỗi nhóm Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm Sản phẩm I Sản phẩm II A 10 2 2 B 2 0 1 C 12 1 3. Cho biết một đơn vị sản phẩm I lãi 30 nghìn đồng, một đơn vị sản phẩm II lãi 50 nghìn đồng. Em hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi cao nhất. + Bài toán “Lá cờ Việt Nam”: Trong toán học và nghệ thuật, hai đại lượng được gọi là có tỷ số vàng hay tỷ lệ vàng nếu tỷ số giữa tổng của các đại lượng đó với đại lượng lớn hơn bằng tỷ số giữa đại lượng lớn hơn với đại lượng nhỏ hơn. Tỷ lệ vàng thường được ký hiệu bằng ký tự (phi) trong bảng chữ cái Hy Lạp nhằm tưởng nhớ đến Phidias, nhà điêu khắc đã xây dựng nên đền Parthenon. Tỷ lệ vàng được biểu diễn a b aa b trong đó a b. Hình chữ nhật tỷ lệ vàng với cạnh dài a và cạnh ngắn b, khi đặt cạnh hình vuông có cạnh a, sẽ tạo thành hình chữ nhật đồng dạng tỷ lệ vàng với cạnh dài a b và cạnh ngắn a. Đây cũng minh họa cho liên hệ a b a a b. Bằng kiến thức liên quan đến toán học, em hãy nêu một lí do mà Hiến pháp năm 2013 đã quy định: Quốc kỳ nước Cộng hoà xã hội chủ nghĩa Việt Nam hình chữ nhật có chiều rộng bằng hai phần ba chiều dài. + Cho hàm số 2 y x x 2 8 có đồ thị là parabol P. Lấy hai điểm A(-1;-5) và B(5;7) thuộc P. Tìm tọa độ điểm C trên cung AB của P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic 30 tháng 4 lớp 10 môn Toán năm 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề Olympic 30 tháng 4 lớp 10 môn Toán năm 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF - Nội dung bài viết Đề Olympic 30 tháng 4 lớp 10 môn Toán năm 2021 trường chuyên Lê Hồng Phong TP HCM Đề Olympic 30 tháng 4 lớp 10 môn Toán năm 2021 trường chuyên Lê Hồng Phong TP HCM Vào ngày Thứ Bảy, 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong tại quận 5, thành phố Hồ Chí Minh đã tổ chức kỳ thi Olympic truyền thống vào ngày 30 tháng 4 với môn Toán dành cho học sinh lớp 10. Đây là kỳ thi lần thứ XXVI (26) của trường trong năm 2021. Đề thi Olympic Toán lớp 10 trường chuyên Lê Hồng Phong TP HCM đã được biên soạn theo hình thức tự luận, gồm 01 trang với 05 bài toán. Thời gian làm bài là 180 phút. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho học sinh. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: + Đề bài 1: Với số nguyên dương n, xét bảng vuông gồm có 2n x 2n ô vuông, trong mỗi ô sẽ có một trong 3 số 1, 0 hoặc -1 sao cho trong mỗi bảng con 2 x 2 luôn tìm được 3 ô có tổng bằng 0. Hãy chứng minh giá trị lớn nhất của tổng tất cả các số trong bảng. + Đề bài 2: Cho tam giác nhọn ABC nội tiếp đường tròn O. Tia AO cắt đoạn thẳng BC tại L. Gọi A' là điểm đối xứng với A qua BC. Giả sử tiếp tuyến qua A' của đường tròn ngoại tiếp tam giác ABC cắt AB và AC tại D và E. Hãy chứng minh rằng đường tròn ngoại tiếp tam giác ABD, A CE, ALA' đều đi qua một điểm khác A. + Đề bài 3: Cho a, b, c là độ dài các cạnh của một tam giác có chu vi bằng 2. Hãy chứng minh ... Đề thi được thiết kế để kiểm tra và đánh giá khả năng giải quyết vấn đề, tư duy logic và kỹ năng toán học của học sinh lớp 10. Hy vọng rằng các thí sinh đã thể hiện sự thành công trong kỳ thi này và học hỏi được nhiều kiến thức mới.
Đề Olympic tháng 4 lớp 10 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề Olympic tháng 4 lớp 10 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề Olympic tháng 4 lớp 10 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh Đề Olympic tháng 4 lớp 10 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh Vào sáng thứ Bảy, ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh đã tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 10 năm học 2020 – 2021. Đề thi bao gồm 01 trang với 05 bài toán tự luận, thời gian làm bài là 120 phút. Đề Olympic tháng 4 Toán lớp 10 năm 2020 – 2021 của sở GD&ĐT TP Hồ Chí Minh là cơ hội để học sinh thử sức, đánh giá năng lực của mình trong môn Toán. Đề thi được thiết kế cẩn thận, đa dạng về nội dung và độ khó, giúp kích thích tư duy logic, sáng tạo cho học sinh. Kỳ thi Olympic tháng 4 là dịp để các thí sinh thể hiện kiến thức, kỹ năng và sự tự tin trong giải các bài toán Toán đa dạng và phong phú. Qua đó, họ có cơ hội rèn luyện, nâng cao khả năng giải quyết vấn đề, từ đó phát triển toàn diện các kỹ năng Toán học của mình. Đề Olympic tháng 4 lớp 10 môn Toán năm 2020 2021 sở GD ĐT TP Hồ Chí Minh mang đến những cơ hội thách thức và hứa hẹn cho các thí sinh, khẳng định vai trò quan trọng của môn học Toán trong quá trình giáo dục và đào tạo học sinh trẻ.
Đề Olympic lớp 10 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội
Nội dung Đề Olympic lớp 10 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội Bản PDF - Nội dung bài viết Đề Olympic Toán lớp 10 năm 2020 - 2021 liên cụm trường THPT Hanoi Đề Olympic Toán lớp 10 năm 2020 - 2021 liên cụm trường THPT Hanoi Ngày Thứ Bảy 20 tháng 03 năm 2021, liên cụm trường THPT gồm Thanh Xuân, Cầu Giấy, Mê Linh, Sóc Sơn, Đông Anh ở thành phố Hà Nội đã tổ chức kỳ thi Olympic Toán lớp 10 năm học 2020 - 2021. Đây là một bước quan trọng để khuyến khích sự tích cực học tập và rèn luyện kỹ năng toán học của học sinh. Đề thi Olympic Toán lớp 10 năm 2020 - 2021 liên cụm trường THPT Hà Nội được biên soạn với dạng đề thi tự luận, gồm 01 trang với 05 bài toán. Thời gian làm bài là 150 phút và đề thi cung cấp lời giải chi tiết để học sinh tham khảo và tự kiểm tra kết quả của mình. Trong đề thi, có những câu hỏi thú vị như: Tìm tham số b và c sao cho đồ thị của hàm số là một đường parabol với đỉnh tại I(2;5), hoặc lập bảng biến thiên của hàm số để tìm tham số m sao cho phương trình có nghiệm duy nhất. Ngoài ra, còn có câu hỏi liên quan đến tính diện tích tam giác dựa trên các điều kiện trước đó. Đề Olympic Toán lớp 10 năm 2020 - 2021 là cơ hội để học sinh thử thách khả năng giải quyết vấn đề, rèn luyện tư duy logic và sự tỉ mỉ trong việc suy luận và tính toán. Hy vọng rằng các em sẽ có được trải nghiệm thú vị và học hỏi nhiều điều bổ ích từ kỳ thi này.
Đề học sinh giỏi lớp 10 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 10 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 10 năm 2020 - 2021 trường THPT Phùng Khắc Khoan Hà Nội Đề học sinh giỏi Toán lớp 10 năm 2020 - 2021 trường THPT Phùng Khắc Khoan Hà Nội Chúng tôi xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 10 đề học sinh giỏi Toán lớp 10 năm học 2020 - 2021 của trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội. Đề thi gồm 1 trang với 6 bài toán dạng tự luận, thời gian làm bài thi là 150 phút và có lời giải chi tiết. Một trong những câu hỏi trong đề thi là: Trong mặt phẳng với tọa độ Oxy, cho tam giác ABC, BE và CD là các đường cao của tam giác. Giả sử D(2;0), E(1;3) và đường thẳng BC có phương trình: y = 1 - 2x. a/ Tìm tọa độ của M biết M là trung điểm của BC. b/ Tìm tọa độ của điểm B biết B có hoành độ dương. Câu hỏi khác trong đề thi là: Cho các số thực x, y, z thỏa mãn x + y + z = 0, x^2 + y^2 + z^2 = 8. Tìm giá trị nhỏ nhất của biểu thức S = |x| + |y| + |z|. Và câu hỏi cuối cùng trong đề thi năm nay là: Cho lục giác ABCDEF có AB vuông góc với EF và hai tam giác ACE và BDF có cùng trọng tâm. Chứng minh rằng AB^2 + EF^2 = CD^2. Hy vọng rằng đề thi sẽ giúp các em học sinh lớp 10 tại trường THPT Phùng Khắc Khoan Hà Nội phát triển kỹ năng giải toán và chuẩn bị tốt cho kỳ thi sắp tới.