Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Khánh Hòa

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi môn Toán THPT cấp Quốc gia năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra trong 02 ngày: 21/09/2022 (vòng 1) và 22/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Tìm tất cả các cặp số nguyên không âm (x; y) sao cho x2 + 3y và y2 + 3x đều là các số chính phương. + Số nguyên dương n được gọi là “hợp lý” nếu mọi số chính phương khi chia cho n đều được số dư là số chính phương. a) Chứng minh n = 16 là số “hợp lý”. b) Chứng minh rằng mọi số “hợp lý” đều không vượt quá 500. + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Hai điểm E, F lần lượt thuộc cạnh CA, AB (E và F không thuộc {A;B;C} sao cho EF song song với BC. Gọi D là điểm đối xứng với A qua EF. a) Đường thẳng đi qua A song song với BC cắt đường tròn (O) tại H (H khác A). Chứng minh ba đường thẳng DH, BE, CF đồng quy. b) Gọi I là giao điểm của BE và CF. Đường tròn đi qua E, F tiếp xúc với đường tròn (O) tại điểm L (L khác A). Chứng minh ba điểm L, D, I thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi dự thi học sinh giỏi Quốc gia THPT 2018 môn Toán sở Bắc Ninh
Đề thi chọn HSG thành phố Toán 12 năm học 2017 - 2018 sở Hải Phòng (Không chuyên)
Đề thi chọn đội dự tuyển thi học sinh giỏi Quốc gia THPT 2018 môn Toán sở Đồng Nai
Đề thi chọn HSG thành phố Toán 12 năm 2019 - 2020 sở Hà Nội