Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 2024 sở GD ĐT Ninh Bình

Nội dung Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 2024 sở GD ĐT Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 06/10/2023 và 07/10/2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho dãy số (xn) được xác định như sau, trong đó a là một số thực dương cho trước. a) Chứng minh rằng dãy (xn) có giới hạn hữu hạn. b) Giả sử lim xn = c. Tìm số thực a để dãy (xn) xác định bởi yn có giới hạn hữu hạn khác 0. + Cho tam giác ABC nhọn, không cần nội tiếp đường tròn (O) có các đường cao AD, BE, CF đồng quy tại H. Gọi T là giao điểm thứ hai của đường thẳng CH với đường tròn (O); I là giao điểm của AT với BC; J là giao điểm của AD với EF. Gọi M, N lần lượt là trung điểm của các đoạn HC, HE. Lấy điểm P trên EF sao cho MP song song với DE, điểm Q trên BJ sao cho EQ song song với NP. a) Chứng minh rằng ba điểm I, E, Q thẳng hàng. b) Gọi X là giao điểm của BH với CO, Y là giao điểm của CH với BO, Z là trực tâm tam giác DEF. Chứng minh rằng OZ chia đôi đoạn XY. + Cho tập hợp S = {1; 2; 3; …; 2048}. a) Chứng minh khẳng định sau: “Với mọi tập con X của tập S có số phần tử bằng 15, luôn tồn tại hai tập con khác rỗng rời nhau A, B của tập X sao cho i = j”. Khẳng định này còn đúng không khi số phần tử của tập X bằng 12? b) Tập con Y khác rỗng của S thoả mãn điều kiện: với mọi y thuộc Y thì 15y không thuộc Y. Tìm số phần tử lớn nhất có thể của tập Y.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán lớp 12 THPT cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Cho hàm số y f x có bảng biến thiên như hình vẽ sau Khẳng định nào sau đây đúng? A. Đồ thị hàm số không có tiệm cận. B. Hàm số nghịch biến trên các khoảng và C. Đồ thị hàm số có ba đường tiệm cận. D. Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng 0. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD b và cạnh bên SA c vuông góc với mặt phằng (ABCD). Gọi M là một điếm trên cạnh SA sao cho AM x 0 x c. Tìm x để mặt phằng (MBC) chia khối chóp thành hai khối đa diện có thể tích bằng nhau. + Cho 3 số abc theo thứ tự lập thành cấp số nhân với công bội khác 1. Biết cũng theo thứ tự đó chúng lần lượt là số thứ nhất, thứ tư và thứ tám của một cấp số cộng công sai là d. Tính a d.
Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 2022 sở GD ĐT Cà Mau
Nội dung Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 2022 sở GD ĐT Cà Mau Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Cà Mau gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút; kỳ thi được diễn ra vào Chủ Nhật ngày 16 tháng 01 năm 2022.
Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hà Tĩnh
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hà Tĩnh Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh gồm 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Tại một ga tàu có 5 khách lên tàu một cách ngẫu nhiên. Biết rằng đoàn tàu có 5 toa tàu và mỗi toa có đủ chỗ cho 5 khách. Tính xác suất để ít nhất 3 toa có khách lên. + Người ta muốn sản xuất một cái thùng đựng dầu có dạng hình trụ với nắp đậy và dung tích là 1m. Biết chi phí sản xuất mặt đáy của thùng là 1000000 đồng trên 1m2 và chi phí sản xuất mặt bên của thùng là 1200000 đồng trên 1m2. Hỏi phải sản xuất thùng với bán kính đáy bằng bao nhiêu để chi phí sản xuất thấp nhất. + Cho hình chóp tứ giác đều S.ABCD có SA = a11. a) Biết cosin của góc hợp bởi hai mặt phẳng (SBC) và (SCD) bằng a. Tính thể tích của khối chóp S.ABCD. b) Biết cạnh đáy AB = a2, gọi X là điểm di động trong mặt phẳng (ABCD), tìm giá trị lớn nhất của biểu thức k = (SB + BX)/SX.
Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Bình Dương
Nội dung Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 2022 sở GD ĐT Bình Dương Bản PDF Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Bình Dương gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề), kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2021, đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán). Trích dẫn đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Bình Dương : + Một hàng cây bưởi Tân Uyên gồm 17 cây thẳng hàng được đánh số cây theo thứ tự là các số tự nhiên từ 1 đến 17. Ban đầu mỗi cây có một con ong đậu trên đó để hút mật hoa. Sau đó, cứ mỗi giờ có hai con ong nào đó bay sang hai cây bên cạnh để tìm và hút mật nhưng theo hai chiều ngược nhau. Hỏi sau một số giờ, có hay không trường hợp mà: a) Không có con ong ở cây có thứ tự chẵn. b) Có 9 con ong ở cây cuối cùng. + Cho tam giác ABC có I là tâm đường tròn nội tiếp. Gọi M N P lần lượt là các điểm nằm trên các cạnh BC CA AB sao cho AN AP BP BM CM CN. Gọi X Y Z lần lượt là tâm đường tròn nội tiếp của các tam giác ANP BPM CMN. Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác XYZ. + Cho tứ giác ABCD nội tiếp đường tròn O. Đường thẳng qua C cắt các tia đối của tia BA DA lần lượt tại M và N. Chứng minh rằng 2 4 BCD AMN S BD S AC.