Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 2021 trường chuyên Trần Hưng Đạo Bình Thuận

Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường chuyên Trần Hưng Đạo Bình Thuận Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2020-2021 trường chuyên Trần Hưng Đạo Bình Thuận Đề thi tuyển sinh môn Toán năm 2020-2021 trường chuyên Trần Hưng Đạo Bình Thuận Ngày Chủ Nhật 05 tháng 07 năm 2020, trường THPT chuyên Trần Hưng Đạo tại thành phố Phan Thiết, tỉnh Bình Thuận đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020-2021. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận và thời gian làm bài là 150 phút (không tính thời gian giám thị coi thi và phát đề). Trong đề thi, có một bài toán yêu cầu chứng minh rằng ba điểm M, H, N trên mặt phẳng thẳng hàng. Bài toán khác đưa ra vấn đề tìm đường tròn đi qua 20 điểm phân biệt trong mặt phẳng, với 12 điểm nằm bên trong đường tròn và 8 điểm nằm bên ngoài. Ngoài ra, đề thi còn yêu cầu học sinh tìm tất cả các số nguyên tố p sao cho 2p + 1 là lập phương của một số nguyên dương. Đây là một bài toán khá thú vị và đòi hỏi sự tỉ mỉ, cẩn thận từ học sinh khi giải quyết. Chắc chắn rằng, đề thi tuyển sinh môn Toán của trường chuyên Trần Hưng Đạo - Bình Thuận năm nay sẽ là một thách thức đáng kể đối với các thí sinh, đồng thời cũng là bài kiểm tra hiểu biết và kỹ năng của họ trong môn học này.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 6 bài toán tự luận, với lời giải chi tiết. Trong đó, một số bài toán được trích dẫn như sau: 1. Một đám đất hình chữ nhật có chu vi là 24m. Nếu tăng độ dài một cạnh lên 2m và giảm độ dài cạnh còn lại 1m, diện tích đám đất tăng thêm 1m2. Hãy tính độ dài các cạnh ban đầu của đám đất. 2. Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F lần lượt là hình chiếu của M trên các đường thẳng BC, CA, AB. Chứng minh rằng: a) Bốn điểm M, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn b) Ba điểm D, E, F thẳng hàng c) BC/MD = CA/ME + AB/MF
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Đồng Tháp Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp bao gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường tổ chức hội thi Đồng Tháp với các nội dung về hoạt động khởi nghiệp, du lịch, văn hóa đặc trưng, món ăn, cây trái của tỉnh. Ba đội xuất sắc vào thi chung kết, mỗi đội trả lời 12 câu hỏi, mỗi câu đúng được cộng 10 điểm, sai trừ 3 điểm, không trả lời không được điểm. Đội Hoa Sen được 61 điểm, hỏi đội đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? + Giáo viên sử dụng công nghệ thông tin, phần mềm biểu diễn để học sinh quan sát hình thang cân. Hình thang ABCD (AB song song với CD) có AB = 30cm, CD = 54cm, và đường cao AH = 9cm. Tính thể tích và diện tích mặt ngoài của hình tạo thành khi quay quanh cạnh đáy CD.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Long
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long bao gồm 6 bài toán tự luận. Trong đó, có một bài toán về tam giác nhọn ABC nội tiếp đường tròn (O;R) và các đường cao AD, BM, CN cắt nhau tại H. Bài toán được phân thành các phần sau: Chứng minh rằng AM.AC = AN.AB. Chứng minh rằng OA vuông góc với MN. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI = NG. Bài toán này đòi hỏi học sinh phải áp dụng kiến thức về định lí và tính chất của tam giác nội tiếp, đường cao và đường trung trực để giải quyết các vấn đề được đưa ra. Việc làm bài toán này không chỉ giúp học sinh rèn luyện khả năng phán đoán, suy luận mà còn giúp họ hiểu sâu hơn về mối quan hệ giữa các yếu tố trong tam giác.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Long An
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Long An Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An Đề thi tuyển sinh THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An bao gồm 4 bài toán tự luận có lời giải chi tiết. Một số bài toán trong đề: + Cho hai hàm số: y = -x^2 và y = 2x – 5. Hãy vẽ đồ thị của hai hàm số đó trên mặt phẳng tọa độ Oxy. + Viết phương trình của đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B bất kỳ (B không trùng O và C). Gọi M là trung điểm của đoạn AB. Kẻ dây cung DE vuông góc với AB qua M. Kẻ BI vuông góc với CD (I thuộc CD). a) Nếu AM = 4cm; MC = 9cm. Hãy tính độ dài của đoạn MD và giá trị của tanA trong tam giác MDA. b) Chứng minh rằng BMDI là tứ giác nội tiếp. c) Chứng minh rằng ADBE là hình thoi và ba điểm I, B, E thẳng hàng. d) Gọi O’ là tâm của đường tròn nằm trên đường kính BC. Chứng minh rằng MI là tiếp tuyến của đường tròn đó.