Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu chủ đề hai đường thẳng song song

Tài liệu gồm 29 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai đường thẳng song song, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Hai đường thẳng song song. Tính chất 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho. Tính chất 2: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau. II. HỆ THỐNG VÍ DỤ MINH HỌA

Nguồn: toanmath.com

Đọc Sách

Phương pháp xác định giao điểm - giao tuyến - thiết diện trong không gian
Tài liệu hướng dẫn phương pháp xác định giao điểm, giao tuyến và thiết diện trong hình học không gian thông qua các bài tập có lời giải chi tiết. Dạng 1 : Xác định giao tuyến của hai mặt phẳng (a) và (b) Phương pháp: + Tìm hai điểm chung phân biệt của hai mặt phẳng (a) và (b) + Đường thẳng đi qua hai điểm chung ấy là giao tuyến cần tìm Chú ý: Để tìm chung của (a) và (b) thường tìm 2 đường thẳng đồng phẳng lần lượt nằm trong hai mp giao điểm nếu có của hai đường thẳng này là điểm chung của hai mặt phẳng Dạng 2: Xác định giao điểm của đường thẳng a và mặt phẳng (a) Phương pháp: + Tìm đường thẳng b nằm trong mặt phẳng (a) + Giao điểm của a và b là giao đt a và mặt phẳng (a) [ads] Dạng 3: Chứng minh ba điểm thẳng hàng Phương pháp: + Chứng minh ba điểm đó cùng thuộc hai mp phân biệt + Khi đó ba điểm thuộc đường thẳng giao tuyến của hai mp Dạng 4: Tìm thiết diện của hình chóp và mặt phẳng (a) Chú ý: Mặt phẳng (a) có thể chỉ cắt một số mặt của hình chóp Cách 1: Xác định thiết diện bằng cách kéo dài các giao tuyến Cách 2: Xác định thiết diện bằng cách vẽ giao tuyến phụ
Chuyên đề trắc nghiệm quan hệ song song
Tài liệu gồm 35 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề quan hệ song song, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 2. VẤN ĐỀ 1. HAI ĐƯỜNG THẲNG SONG SONG. 1. Vị trí tương đối giữa hai đường thẳng phân biệt. 2. Hai đường thẳng song song. VẤN ĐỀ 2. ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG. VẤN ĐỀ 3. HAI MẶT PHẲNG SONG SONG. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm đại cương về hình học không gian
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề đại cương về hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 2. I. LÝ THUYẾT TRỌNG TÂM 1. Mở đầu về hình không gian. 2. Các tính chất thừa nhận. 3. Điều kiện xác định mặt phẳng. 4. Hình chóp và hình tứ diện. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1: Xác định giao tuyến của hai mặt phẳng. + Dạng 2: Tìm giao điểm của đường thẳng với mặt phẳng. + Dạng 3: Chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy. + Dạng 4: Tìm thiết diện của hình chóp và mặt phẳng (P). BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Trắc nghiệm quan hệ song song trong các đề thi thử Toán 2018
Tài liệu gồm 62 trang tổng hợp câu hỏi và bài tập trắc nghiệm đường thẳng và mặt phẳng trong không gian, quan hệ song song có lời giải chi tiết trong các đề thi thử Toán 2018 của các trường THPT và sở GD – ĐT trên cả nước. Trích dẫn tài liệu Trắc nghiệm quan hệ song song trong các đề thi thử Toán 2018 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm tam giác SAB. Biết thiết diện của hình chóp cắt bởi mặt phẳng (IJG) là hình bình hành. Hỏi khẳng định nào sao đây đúng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N và P lần lượt là trung điểm của các cạnh SA, BC, CD. Hỏi thiết diện của hình chóp cắt bởi mặt phẳng (MNP) là hình gì? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng? A. d qua S và song song với AB. B. d qua S và song song với BC. C. d qua S và song song với BD. D. d qua S và song song với DC.