Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quan hệ chia hết và tính chất

Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quan hệ chia hết và tính chất Bản PDF - Nội dung bài viết Sytu giới thiệu tài liệu học toán về quan hệ chia hết và tính chấtTóm tắt lý thuyếtBài tập trắc nghiệm Sytu giới thiệu tài liệu học toán về quan hệ chia hết và tính chất Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm về chuyên đề quan hệ chia hết và tính chất. Tài liệu bao gồm các bài toán được chọn lọc và phân loại theo các dạng toán, từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết. Đây là tài liệu tham khảo hữu ích giúp các em nắm vững kiến thức khi học Toán lớp 6 phần Số học. Tóm tắt lý thuyết 1. Quan hệ chia hết: Ta nói a chia hết cho b nếu có số tự nhiên k sao cho a = k.b. Khái niệm ước và bội: Ư(a) là tập hợp các ước của a, B(b) là tập hợp các bội của b. Cách tìm ước và bội của một số. 2. Tính chất chia hết của một tổng: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. Nếu có một số hạng không chia hết cho số đã cho, và các số hạng còn lại đều chia hết cho số đó thì tổng không chia hết cho số đã cho. 3. Các dạng toán thường gặp: Bài toán về quan hệ chia hết, ước và bội của một số, và bài toán xét tính chia hết hay không chia hết. Bài tập trắc nghiệm Dạng I: Bài toán về quan hệ chia hết, ước và bội của một số. Dạng II: Bài toán về tính chất chia hết. File Word đã được chuẩn bị sẵn để quý thầy, cô tham khảo. Hy vọng tài liệu sẽ giúp các em ôn tập hiệu quả và nâng cao kiến thức Toán của mình. Cám ơn!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề điểm và đường thẳng
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề điểm và đường thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được những quan hệ cơ bản giữa điểm, đường thẳng: điểm thuộc đường thẳng, điểm không thuộc đường thẳng. Kĩ năng: + Biết cách đặt tên cho điểm và đường thẳng. + Kể tên được các điểm, đường thẳng trong hình vẽ cho trước. + Vẽ được hình gồm các điểm và đường thẳng thoả mãn điều kiện cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đặt tên điểm và đường thẳng. + Dùng các chữ cái in hoa A, B, C … để đặt tên cho điểm. + Dùng các chữ cái in thường a, b, c, d … để đặt tên cho đường thẳng. Dạng 2 : Quan hệ giữa điểm và đường thẳng. Để xét quan hệ giữa một điểm và đường thẳng ta làm như sau: – Bước 1. Quan sát đường thẳng đã cho trong hình vẽ. – Bước 2: + Trên đường thẳng có những điểm nào thì những điểm đó thuộc đường thẳng. + Đường thẳng không qua đi qua những điểm nào thì điểm đó không thuộc đường thẳng. Dạng 3 : Vẽ điểm và đường thẳng theo điều kiện cho trước. Để vẽ điểm và đường thẳng thoả mãn điều kiện cho trước ta làm như sau: + Bước 1. Vẽ đường thẳng. + Bước 2. Dựa vào điều kiện cho trước để vẽ điểm.
Chuyên đề tỉ số của hai số, tỉ số phần trăm, biểu đồ phần trăm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tỉ số của hai số, tỉ số phần trăm, biểu đồ phần trăm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được ý nghĩa và biết cách tìm tỉ số của hai số, tỉ số phần trăm, tỉ lệ xích. + Biết cách đọc các biểu đồ phần trăm dạng cột, ô vuông và hình quạt. Kĩ năng: + Biết cách dựng các biểu đồ phần trăm dạng cột, ô vuông, hình quạt. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm tỉ số của hai số. Tỉ số hai số a và b b 0 là a b. Khái niệm tỉ số thường được dùng khi nói về thương của hai đại lượng (cùng loại và cùng đơn vị đo). Chú ý: + Tỉ số không có đơn vị đo. + Tỉ số của a và b khác b a (tỉ số của b và a). Dạng 2 : Tỉ số phần trăm và biểu đồ phần trăm. Tỉ số phần trăm của hai số a và b là. a% của số M bằng. b% của một số bằng x thì số đó bằng? Dạng 3 : Tỉ lệ xích. a là khoảng cách giữa hai điểm trên bản đồ. B là khoảng cách thực tế của hai điểm này. T là tỉ lệ xích. Chú ý: a và b có cùng đơn vị đo.
Chuyên đề tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nhận biết và hiểu được quy tắc tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó. Kĩ năng: + Vận dụng được quy tắc tìm giá trị phân số của một số cho trước, tìm một số biết giá trị một phân số của nó. + Áp dụng vào các bài toán thực tiễn. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm giá trị phân số của một số cho trước. Muốn tìm m n của số b cho trước, ta tính. m% của số b bằng. Dạng 2 : Tìm một số biết giá trị phân số của nó. Muốn tìm một số biết m n của nó bằng a, ta tính. Dạng 3 : Dạng toán tính ngược từ cuối và kết hợp sử dụng hai dạng trên.
Chuyên đề hỗn số, số thập phân, phần trăm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hỗn số, số thập phân, phần trăm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hỗn số, số thập phân, phần trăm. Kĩ năng: + Biến đổi được hỗn số về phân số và ngược lại. + Biết viết dạng phân số về số thập phân và ngược lại. + Viết được số thập phân dưới dạng kí hiệu %. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết phân số dưới dạng hỗn số và ngược lại. Cách viết phân số a b với a b và 0 b a thành hỗn số: + Bước 1. Thực hiện phép chia a cho b được thương c và số dư d. + Bước 2. a/b = c + d/b = c d/b. Nhận xét: Phần phân số d b luôn nhỏ hơn 1. Chú ý: Nếu phân số âm, ta chỉ cần viết số đối của nó dưới dạng hỗn số rồi thêm dấu “-” trước kết quả. Cách viết một hỗn số dương thành phân số. Chú ý: Nếu hỗn số âm thì ta viết số đối của nó dưới dạng phân số rồi thêm dấu “-” trước kết quả. Dạng 2 : Viết các số dưới dạng số thập phân, phần trăm và ngược lại. Đổi số thập phân ra phân số thập phân. Dạng 3 : Các phép toán với hỗn số. Cộng, trừ hai hỗn số: Nếu a d nhưng b e c f thì ta cần chuyển 1 đơn vị ở phần nguyên của số bị trừ để thêm vào phần phân số, sau đó thực hiện phép trừ. Chú ý: Ta cũng có thể viết các hỗn số dưới dạng phân số rồi thực hiện phép tính cộng, trừ. Nhân, chia hai hỗn số: + Viết hỗn số dưới dạng phân số rồi thực hiện phép nhân, chia phân số. + Khi nhân hoặc chia một hỗn số với một số nguyên, ta có thể viết hỗn số dưới dạng một tổng của một số nguyên và một phân số. Dạng 4 : Các phép tính về số thập phân. Dạng 5 : Tính giá trị của một biểu thức.