Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Tương Dương - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Tương Dương – Nghệ An : + Gọi 1 2 x x là hai nghiệm của phương trình 2 x x 5 10. Không giải phương trình hãy tính giá trị của các biểu thức sau: 3 3 1 2 1 1 C x x. + Một sân trường hình chữ nhật có chiều dài hơn chiều rộng 16 mét. Biết rằng hai lần chiều dài kém 5 lần chiều rộng 28 mét. Tính chiều dài và chiều rộng của sân trường? Chiều cao của một hình trụ bằng bán kính đường tròn đáy. Diện tích xung quanh của hình trụ là 314 cm2. Hãy tính thể tích hình trụ đó (làm tròn kết quả đến chữ số thập phân thứ hai). + Từ điểm P nằm ngoài đường tròn (O), vẽ hai tiếp tuyến PM và PN với (O) (M, N là hai tiếp điểm). Vẽ dây cung MQ song song với PN; PQ cắt đường tròn (O) tại điểm thứ hai là A (A khác Q); a) Chứng minh: Tứ giác PMON nội tiếp; b) Chứng minh: MP2 = PA.PQ; c) Tia MA cắt PN tại K. Chứng minh K là trung điểm của NP.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán 2018 - 2019 trường PTNK - TP. HCM (không chuyên)
Đề tuyển sinh lớp 10 môn Toán 2018 – 2019 trường PTNK – TP. HCM (không chuyên) được biên soạn và tổ chức thi ngày 26/05/2018 nhằm giúp tuyển chọn các em học sinh khối 10 đạt chỉ tiêu về năng lực vào trường Phổ Thông Năng Khiếu, Đại học Quốc gia TP. HCM để chuẩn bị cho năm học 2018 – 2019, đề thi gồm 1 trang với 5 bài toán tự luận, thí sinh làm bài trong 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán 2018 – 2019 trường PTNK – TP. HCM : + Cho phương trình x^2 – x + 3m – 11 = 0 (1). a) Với giá trị nào của m thì phương trình (1) có nghiệm kép. Tìm nghiệm kép đó. b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 sao cho 2017×1 + 2018×2 = 2019. [ads] + Tứ giác ABCD nội tiếp đường tròn (T) tâm O, bán kính R; góc CAD = 45 độ, AC vuông góc với BD và cắt BD tại I, AD > BC. Dựng CK vuông góc với AD (K ∈ AD), CK cắt BD tại H và cắt (T) tại E (E ≠ C). a) Tính số đo góc COD. Chứng minh các điểm C, I, K, D cùng thuộc một đường tròn và AC = BD. b) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BHE. Tính IK theo R. c) IK cắt AB tại F. Chứng minh O là trực tâm tam giác AIK và CK.CB = CF.CD.
Đề tuyển sinh vào lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Hưng Yên
Đề tuyển sinh vào lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Hưng Yên được biên soạn và tổ chức thi nhằm giúp tuyển chọn các em học sinh khá, giỏi vào học tại các trường THPT chuyên tại tỉnh Hưng Yên trong năm học 2018 – 2019, đề gồm 6 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh vào lớp 10 THPT chuyên 2018 – 2019 sở Hưng Yên : + Quảng đường AB dài 120 km. Một ô tô chạy từ A đến B với vận tốc xác định. Khi từ B trở về A, ô tô chạy với vận tốc nhỏ hơn vận tốc lúc đi từ A đến B là 10 km/h. Tính vận tốc lúc về của ô tô, biết thời gian về nhiều hơn thời gian đi 24 phút. [ads] + Tìm m để đường thẳng y = x + m^2 + 2 và đường thẳng y = (m – 2)x + 11 cắt nhau tại một điểm trên trục tung. + Tìm m để phương trình x^4 + 5x^2 + 6 – m = 0 (m là tham số) có đúng hai nghiệm.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2018 - 2019 sở GD và ĐT Bình Dương
Đề tuyển sinh lớp 10 THPT môn Toán năm 2018 – 2019 sở GD và ĐT Bình Dương được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được tổ chức nhằm giúp các trường THPT trên địa bàn tỉnh Bình Dương đánh giá được năng lực học sinh, để tuyển sinh học sinh lớp 10 cho năm học mới theo tiêu chí của mỗi trường, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán 2018 – 2019 sở Bình Dương : + Một người dự định đi xe máy từ tỉnh A đến tỉnh B cách nhau 90km trong một thời gian đã định. Sau khi đi được 1 giờ người đó nghỉ 9 phút. Do đó, để đến tỉnh B đúng hẹn, người ấy phải tăng vận tốc thêm 4km/h. Tính vận tốc lúc đầu của người đó. [ads] + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) có bán kính R= 3cm. Các tiếp tuyến với (O) tại B và C cắt nhau tại D. 1) Chứng minh tứ giác OBDC nội tiếp đường tròn. 2) Gọi M là giao điểm của BC và OD. Biết OD = 5cm. Tính diện tích tam giác BCD. 3) Kẻ đường thẳng d đi qua D và song song với đường tiếp tuyến với (O) tại A, d cắt các đường thẳng AB, AC lần lượt tại P, Q. Chứng minh: AB.AP = AQ.AC. 4) Chứng minh: góc PAD bằng góc MAC.
Bộ đề ôn thi tuyển sinh vào lớp 10 THPT và THPT chuyên môn Toán
Để góp phần định hướng cho việc dạy – học ở các trường nhất là việc ôn tập, rèn luyện kĩ năng cho học sinh sát với thực tiễn giáo dục của tỉnh nhà nhằm nâng cao chất lượng các kì thi tuyển sinh, Sở GD và ĐT Hà Tĩnh phát hành Bộ tài liệu ôn thi tuyển sinh vào lớp 10 THPT và THPT chuyên môn Toán. Tài liệu được viết theo hình thức Bộ đề ôn thi, gồm hai phần: một phần ôn thi vào lớp 10 THPT, một phần ôn thi vào lớp 10 THPT chuyên dựa trên cấu trúc đề thi của Sở. Mỗi đề thi đều có lời giải tóm tắt và kèm theo một số lời bình. Bộ tài liệu ôn thi này do các thầy, cô giáo là lãnh đạo, chuyên viên phòng Giáo dục Trung học – Sở GD và ĐT, cốt cán chuyên môn các bộ môn của Sở; các thầy, cô giáo là Giáo viên giỏi tỉnh biên soạn.