Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL học bồi dưỡng Toán lần 1 năm 2018 - 2019 trường Nông Cống 1 - Thanh Hóa

Đề thi KSCL học bồi dưỡng Toán lần 1 năm 2018 – 2019 trường Nông Cống 1 – Thanh Hóa mã đề 190 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán thuộc chương trình Toán 10, Toán 11 và Toán 12 đã học, học sinh làm bài trong vòng 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL học bồi dưỡng Toán lần 1 năm 2018 – 2019 trường Nông Cống 1 – Thanh Hóa : + Cho hàm số y = f(x) có lim f(x) = -3 khi x → +∞ và lim f(x) = 3 khi x → -∞. Chọn mệnh đề đúng. A. Đồ thị hàm số đã cho không có tiệm cận ngang. B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x = 3 và x = -3. C. Đồ thị hàm số đã cho có đúng một tiệm cận ngang. D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 3 và y = -3. [ads] + Có hai cái giỏ đựng trứng gồm giỏ A và giỏ B, các quả trứng trong mỗi đều có hai loại là trứng lành và trứng hỏng. Tổng số trứng trong hai giỏ là 20 quả và số trứng trong giỏ A nhiều hơn số trứng trong giỏ B. Lấy ngẫu nhiên mỗi giỏ 1 quả trứng, biết xác suất để lấy được hai quả trứng lành là 55/84. Tìm số trứng lành trong giỏ A. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ΔABC nội tiếp đường tròn tâm I(2;2), điểm D là chân đường phân giác trong của góc BAC. Đường thẳng AD cắt đường tròn ngoại tiếp tam giác ΔABC tại điểm thứ hai là M (khác A). Tìm tọa độ các điểm A, B, C biết điểm J(-2;2) là tâm đường tròn ngoại tiếp tam giác ΔACD và phương trình đường thẳng CM là: x + y – 2 = 0. Tìm tổng hoành độ của các đỉnh A, B, C của tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2022 lần 3 trường THPT Ninh Bình - Bạc Liêu - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2021 – 2022 lần 3 trường THPT Ninh Bình – Bạc Liêu, tỉnh Ninh Bình; đề thi có đáp án mã đề 101. Trích dẫn đề thi thử Toán TN THPT 2022 lần 3 trường THPT Ninh Bình – Bạc Liêu – Ninh Bình : + Trong không gian Oxyz, cho hai điểm A (10; 6; −2), B (5; 10; −9) và mặt phẳng (α) : 2x + 2y + z − 12 = 0. Điểm M di động trên (α) sao cho MA, MB luôn tạo với (α) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn (ω) cố định. Hoành độ của tâm đường tròn (ω) bằng? + Hình bên mô tả 5 xã trong một huyện. Hỏi có bao nhiêu cách mà em có thể dùng 4 màu khác nhau để tô màu sao cho không có hai xã giáp nhau nào trùng màu? + Hình nón N có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120◦. Một mặt phẳng qua S cắt hình nón N theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3. Tính diện tích xung quanh Sxq của hình nón N?
Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2022 lần 1 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi; kỳ thi được diễn ra vào tháng 04 năm 2022. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho đường thẳng 1 2 1 1 1 1x y z d và mặt cầu 2 2 2 S x y z x y z 2 4 6 13 0. Lấy điểm M a b c với a 0 thuộc đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA MB MC đến mặt cầu S (A B C là tiếp điểm) thỏa mãn góc AMB 60 BMC 90 CMA 120. Tổng a b c bằng? + Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Một mặt phẳng thay đổi, vuông góc với cắt SO, SA, SB, SC, SD lần lượt tại I M N P Q. Một hình trụ có một đáy nội tiếp tứ giác MNPQ và một đáy nằm trên hình vuông ABCD. Khi thể tích khối trụ lớn nhất thì độ dài SI bằng? + Cho hình nón N1 đỉnh S đáy là đường tròn C O R đường cao SO 40cm. Người ta cắt hình nón bằng mặt phẳng vuông góc với trục để được hình nón nhỏ N2 có đỉnh S và đáy là đường tròn C O R. Biết rằng tỷ số thể tích 2 1 1 8 N N V V. Độ dài đường cao của hình nón N2 là?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Ngô Gia Tự - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2022 lần 1 trường THPT Ngô Gia Tự, tỉnh Đắk Lắk; đề thi có đáp án mã đề 001 002 003 004 005. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian Oxyz, cho hai mặt phẳng Pxy z Q xyz 2 1 0 2 1 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu? + Tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và AB a AC 2a AD 3a. Gọi M là điểm bất kỳ thuộc miền trong tam giác BCD. Qua M, kẻ các đường thẳng 1 d song song với AB cắt mặt phẳng (ACD) tại B d 1 2 song song với AC cắt mặt phẳng (ABD) tại C d 1 3 song song với AD cắt mặt phẳng (ABC) tại D1. Thể tích khối tứ diện MB C D 11 1 lớn nhất bằng? + Cho hình trụ (T) có chiều cao bằng đường kính đáy, hai đáy là các hình tròn (O r) và (O r). Gọi A là điểm di động trên đường tròn (O r) và B là điểm di động trên đường tròn (O r) sao cho AB không là đường sinh của hình trụ (T). Khi thể tích khối tứ diện OO AB đạt giá trị lớn nhất thì đoạn thẳng AB có độ dài bằng?
Đề thi thử Toán THPTQG 2022 lần 1 trường chuyên Quang Trung - Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT Quốc gia năm học 2021 – 2022 lần 1 trường THPT chuyên Quang Trung, tỉnh Bình Phước. Trích dẫn đề thi thử Toán THPTQG 2022 lần 1 trường chuyên Quang Trung – Bình Phước : + Ba bạn Chuyên, Quang, Trung mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;17]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng? + Cho hàm số y = f (x) có đạo hàm là hàm y = f'(x). Đồ thị hàm số y = f'(x) được cho như hình vẽ. Biết rằng f(0) + f(3) = f(2) + f(5). Giá trị nhỏ nhất và giá trị lón nhất của f (x) trên đoạn [0;5] lần lượt là? + Có một vật thể là hình tròn xoay có dạng giống như một cái ly như hình vẽ dưới đây. Người ta đo được đường kính của miệng ly là 4cm và chiều cao là 6cm. Biết rằng thiết diện của chiếc ly cắt bởi mặt phẳng đối xứng là một parabol. Tính thể tích V (cm) của vật thể đã cho.