Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số vô tỉ, căn bậc hai số học Toán 7

Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề số vô tỉ, căn bậc hai số học trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính căn bậc hai. – Các phép toán trong tập hợp các số vô tỉ cũng có các tính chất tương tự các phép toán trong tập hợp các số hữu tỉ. – Để thực hiện phép tính có chứa căn bậc 2, ta có thể làm như sau: + Bước 1. Tính các giá trị căn bậc hai (có thể dùng định nghĩa hoặc máy tính). + Bước 2. Thực hiện đúng thứ tự phép tính. Dạng 2 . Tìm x. – Ta sử dụng các tính chất sau: + Nếu x a thì 2 x a (với a 0). + Nếu 2 x a (với a 0) thì x a hoặc x a và ngược lại. Dạng 3 . So sánh các căn bậc hai. – Sử dụng tính chất: + Với hai số dương bất kì a và b thì a b a b. + Nếu a m m b thì a b. + Nếu x y z t thì x z y t. Dạng 4 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa căn bậc hai. – Áp dụng tính chất cơ bản sau: x 0 với mọi x 0. Dấu “=” xảy ra khi x = 0. Dạng 5 . Tìm giá trị nguyên của x để biểu thức nhận giá trị nguyên. – Tìm điều kiện của x để biểu thức nhận giá trị nguyên, ta thường làm như sau: + Bước 1. Tách phần nguyên: Tách tử theo mẫu sao cho A có dạng tổng của một số nguyên và một phân số có tử số nguyên. + Bước 2. Tìm x: Vận dụng tính chất sau: m A n với m n 0. Để A nhận giá trị nguyên thì m n hay n m. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề các góc tạo bởi một đường thẳng cắt hai đường thẳng
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề các góc tạo bởi một đường thẳng cắt hai đường thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phân biệt được các góc so le trong và góc đồng vị tạo thành bởi một đường thẳng cắt hai đường thẳng. + Nắm vững tính chất về góc so le trong và góc đồng vị. Kĩ năng: + Chỉ ra được các cặp góc so le trong, đồng vị. + Vận dụng được các tính chất về góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Xác định các cặp góc so le trong, cặp góc trong cùng phía, cặp góc đồng vị. Dạng 2: Tính góc.
Chuyên đề hai đường thẳng vuông góc
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa hai đường thẳng vuông góc. + Nắm vững cách vẽ và tính chất về hai đường thẳng vuông góc. + Nắm vững định nghĩa đường trung trực của đoạn thẳng. Kĩ năng: + Vẽ được hai đường thẳng vuông góc; đường trung trực của đoạn thẳng. + Chứng minh được một số bài toán vuông góc đơn giản. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ hình. Dạng 2: Chứng minh hai đường thẳng vuông góc. Dạng 3: Các bài toán vận dụng.
Chuyên đề hai góc đối đỉnh
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai góc đối đỉnh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hai góc đối đỉnh. + Nắm vững tính chất cơ bản của hai góc đối đỉnh. Kĩ năng: + Nhận biết được hai góc đối đỉnh. + Vận dụng được tính chất của hai góc đối đỉnh vào tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết hai góc đối đỉnh. Dạng 2: Tính số đo góc. Dạng 3: Chứng minh hai góc đối đỉnh.
Chuyên đề nghiệm của đa thức một biến
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nghiệm của đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Nắm vững định nghĩa nghiệm của đa thức một biến. + Nhận biết được số nghiệm của đa thức một biến không vượt quá số bậc của đa thức. Kĩ năng: + Kiểm tra được một số có là nghiệm của đa thức một biến hay không. + Tìm được nghiệm của một số đa thức một biến dạng đơn giản. + Biết cách chứng minh đa thức vô nghiệm. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. + Bài toán 1. Tìm nghiệm của đa thức. + Bài toán 2. Chứng minh đa thức không có nghiệm. Dạng 3. Tìm đa thức một biến có nghiệm cho trước.