Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội

Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2022-2023 trường Lương Thế Vinh Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 tại trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 26 tháng 03 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. 3. Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. - Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. - Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. - Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất. Hy vọng rằng đề thi thử Toán này sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022 - 2023 sở GD ĐT Phú Yên Đề tuyển sinh môn Toán (chuyên) năm 2022 - 2023 sở GD ĐT Phú Yên Hôm nay, Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Phú Yên. Đề thi bao gồm các câu hỏi phong phú, đa dạng, để kiểm tra khả năng giải quyết vấn đề và tư duy logic của thí sinh. Hãy cùng phân tích một số câu hỏi chi tiết sau: 1. Tìm m để phương trình \( x^2 - (m + 1)x + m + 3 = 0 \) (trong đó m là tham số) có hai nghiệm x1 và x2 là độ dài hai cạnh AB, AC của tam giác ABC vuông tại A và có BC = 5. 2. Cho ba đường thẳng cố định a, b, c song song nhau sao cho b nằm giữa và cách đều a và c. Một đường thẳng d cố định, vuông góc với a, cắt a, b, c tại A, B, C. Trên đoạn AB lấy điểm I sao cho IA = 2IB. Gọi D là một điểm di động trên c. Trên b lấy điểm E sao cho IE = 1/2.ID. Đường thẳng DE cắt a tại F. a) Chứng minh rằng FIH = 90°. b) Chứng minh rằng đường thẳng DE luôn tiếp xúc với một đường tròn cố định. 3. Cho các số nguyên dương x, y, z thỏa \( (x + y)^4 + 5z = 63x \). Hãy tính giá trị của biểu thức \( Q = x + y + z \). Đây là những câu hỏi thú vị và thách thức đối với các thí sinh, giúp họ rèn luyện kỹ năng giải quyết vấn đề và tư duy logic một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD&ĐT Đồng Nai Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD&ĐT Đồng Nai Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Đồng Nai. Kỳ thi sẽ diễn ra vào thứ Sáu ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 của sở GD&ĐT Đồng Nai bao gồm các câu hỏi sau: Một đội xe được giao nhiệm vụ vận chuyển 150 tấn hàng tiếp tế đến khu vực cách ly do dịch Covid-19. Đội xe đã chở nhiều hơn kế hoạch ban đầu là 5 tấn hàng mỗi ngày và hoàn thành nhiệm vụ sớm hơn 1 ngày. Hỏi theo kế hoạch ban đầu đội xe phải hoàn thành nhiệm vụ trong bao nhiêu ngày? Tính diện tích xung quanh của một hình trụ có bán kính đáy 2 cm và chiều cao gấp 3 lần bán kính đáy. Chứng minh tứ giác MACB nội tiếp khi có điểm M nằm ngoài đường tròn (O;R) và hai tiếp tuyến MA và MB với đường tròn (A và B là hai tiếp điểm). Vẽ tia M nằm giữa hai tia MA và MO, chứng minh hai tam giác MAC và MDA đồng dạng và suy ra MC/MD = (AC/AD)^2. Chứng minh tứ giác HKPQ là hình thang cân khi có giao điểm H của OM và AB, các đường vuông góc DK, OP, OQ tương ứng là K, P, Q. Hy vọng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chương trình luyện thi Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Đắk Lắk Chào đón quý thầy cô giáo và các em học sinh lớp 9! Hãy cùng Sytu khám phá đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Kỳ thi dự kiến diễn ra vào ngày thứ Năm, 16 tháng 06 năm 2022. Đề thi được thực hiện bởi thầy giáo Nguyễn Hải Dương, giáo viên Toán tại trường THCS Phan Chu Trinh, thành phố Buôn Ma Thuột, tỉnh Đắk Lắk. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Đắk Lắk: Hãy giải quyết câu đố về việc mua sách của bạn An để ôn thi tuyển sinh, cùng những bài toán thú vị khác về tam giác và parabol để rèn luyện khả năng giải toán của bạn. Chúng ta sẽ cùng tìm ra giá niêm yết của cuốn sách tham khảo Toán và sách tham khảo Ngữ Văn mà An mua, thông qua việc giảm giá và tăng giá của cửa hàng sách. Ngoài ra, chúng ta cũng sẽ cùng khám phá những bài toán thú vị về tam giác và parabol, từ việc chứng minh tứ giác nội tiếp đến việc xác định tham số để đường thẳng cắt parabol. Hãy tham gia Chương trình luyện thi Đề tuyển sinh môn Toán cùng Sytu để rèn luyện kỹ năng giải toán, chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công trên con đường học tập và nghệ thuật giải toán!
Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Bắc Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 - 2023 sở GD&ĐT Bắc Ninh. Đề thi này dành cho thí sinh muốn thi vào các lớp 10 chuyên Toán và chuyên Tin học. Đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GD&ĐT Bắc Ninh: 1. Cho đường tròn (C) có đường kính AB. Lấy điểm C thuộc đoạn AO (C khác A O). Vẽ đường tròn (I) đường kính BC. Vẽ tiếp tuyến AD và cát tuyến AEF với đường tròn (I) (E nằm giữa A F) sao cho tia AO nằm giữa 2 tia AD AE. Đường thẳng vuông góc với AB từ C cắt đường tròn (O) tại hai điểm gọi một điểm là N sao cho N, D thuộc hai nửa mặt phẳng đối nhau bờ AB. Gọi S là giao điểm của hai đường thẳng DI và NB. R là giao DN và AS. Gọi J là trung điểm SD. a) Chứng minh tam giác AND cân. b) L T lần lượt là tìm đường tròn ngoại tiếp các tam giác SBC và SEF. Chứng minh ba điểm J L T thẳng hàng. 2. Cho hình vuông ABCD có diện tích là S. Tứ giác MNPQ có bốn đỉnh M N P Q thuộc AB BC CD DA và 4 đỉnh này không trùng 4 đỉnh hình vuông. Chứng minh S AC MN NP PQ QM 4. 3. Có 10 bạn học sinh tham gia thi đấu bóng bàn. Hai bạn bất kì đều phải đấu với nhau một trận, bạn nào cũng gặp 9 đối thủ của mình và không có trận nào hòa. Chứng minh rằng luôn xếp được 10 bạn thành 1 hàng dọc sao cho bạn đứng trước thắng bạn đứng kề sau. Đây là một đề thi chuyên sâu, đòi hỏi sự tập trung và logic cao để giải quyết các bài toán. Hy vọng đề thi sẽ giúp các em chuẩn bị tốt cho kì thi tuyển sinh sắp tới. Chúc các em thành công!