Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2)

Nội dung Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Ngày 13 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020 – 2021. Kỳ thi này dành cho thí sinh muốn thi vào các lớp chuyên Toán. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) bao gồm 01 trang với 04 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2): 1. Tìm tất cả các số nguyên dương a, b, c sao cho cả ba số 4a^2 + 5b, 4b^2 + 5c, 4c^2 + 5a đều là bình phương của số nguyên dương. 2. Chứng minh rằng nếu từ một bộ bốn số thực (a, b, c, d) ta xây dựng bộ số mới (a + b, b + c, c + d, d + a) và liên tiếp xây dựng các bộ số mới theo quy tắc trên, nếu ở hai thời điểm khác nhau ta thu được cùng một bộ số (có thể khác thứ tự) thì bộ số ban đầu phải có dạng (a, -a, a, -a). 3. Cho tam giác ABC cân tại A với BAC < 90 độ. Chứng minh rằng bốn điểm A, E, P, F cùng thuộc một đường tròn và các điểm L, S, T, R được xác định như sau... Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) chứa những câu hỏi thú vị và đòi hỏi sự suy luận logic, khả năng phân tích và giải quyết vấn đề của thí sinh. Chúc các thí sinh thành công trong kỳ thi của mình!

Nguồn: sytu.vn

Đọc Sách

Tuyển chọn các đề thi tuyển sinh vào môn Toán Nguyễn Hoàng Nam
Nội dung Tuyển chọn các đề thi tuyển sinh vào môn Toán Nguyễn Hoàng Nam Bản PDF - Nội dung bài viết Tuyển chọn đề thi Toán Nguyễn Hoàng Nam 2013 - 2014 Tuyển chọn đề thi Toán Nguyễn Hoàng Nam 2013 - 2014 Đề thi Toán Nguyễn Hoàng Nam là bộ sưu tập các câu hỏi chất lượng được lựa chọn từ các tỉnh thành trên cả nước trong năm học 2013 - 2014. Bên cạnh đó, sản phẩm còn bổ sung một số câu hỏi trọng tâm thường xuất hiện trong kỳ thi tuyển sinh vào môn Toán. Đặc biệt, các bài toán hình học khó đã được trình bày đầy đủ hình vẽ kèm theo, ký hiệu và sơ đồ chi tiết giúp học sinh dễ dàng hiểu và áp dụng vào việc giải quyết. Tuyển chọn đề thi Toán Nguyễn Hoàng Nam không chỉ giúp học sinh ôn tập hiệu quả mà còn thúc đẩy khả năng tư duy logic và sáng tạo trong việc giải quyết các bài toán phức tạp.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Bình Dương năm học 2017-2018 Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Bình Dương năm học 2017-2018 Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của sở GD và ĐT Bình Dương bao gồm 5 bài toán tự luận, có lời giải chi tiết. Trong đó có một số bài toán thú vị như sau: Bài toán 1: Hai đội công nhân đắp đê ngăn triều cường. Nếu hai đội làm cùng một lúc, họ có thể hoàn thành công việc trong 6 ngày. Nếu làm riêng, đội I hoàn thành công việc chậm hơn đội II là 9 ngày. Hỏi nếu làm riêng, mỗi đội sẽ đắp xong đê trong bao nhiêu ngày? Bài toán 2: Ta có giác AMB cân tại M, nội tiếp trong đường tròn (O; R). Kẻ MH vuông góc với AB (H thuộc AB), MH cắt đường tròn tại N. Biết MA = 10cm, AB = 12cm. Hãy tính MH và bán kính R của đường tròn. Trên tia đối tia BA, lấy điểm C. MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh tứ giác MDEH nội tiếp và chứng minh các hệ thức: NB^2 = NE.ND và AC.BE = BC.AE. Cuối cùng, chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE. Đề thi mang đến những bài toán thú vị, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Hãy cùng nhau khám phá và giải quyết những thách thức trong đề thi này!
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán tại sở GD và ĐT Vĩnh Phúc bao gồm tổng cộng 8 câu hỏi, bao gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận. Đề thi được thiết kế với đáp án và lời giải chi tiết, giúp học sinh dễ dàng kiểm tra và nắm vững kiến thức Toán cần thiết cho kỳ thi tuyển sinh.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định bao gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, với đáp án và lời giải chi tiết. Một số bài toán trong đề: 1. Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C). Hãy chứng minh AM.AB = AN.AC và AN.AC = MN^2. 2. Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Hãy chứng minh rằng IO vuông góc với đường thẳng MN. 3. Chứng minh rằng 4(EN^2 + FM^2) = BC^2 + 6AH^2. 4. Cho tam giác ABC vuông tại A, đường cao AH biết BH = 4cm và CH = 16cm. Độ dài đường cao AH bằng bao nhiêu? 5. Cho hình nón có bán kính bằng 3cm, chiều cao bằng 4cm. Diện tích xung quanh của hình nón đã cho bằng bao nhiêu?