Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát vào môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội

Nội dung Đề khảo sát vào môn Toán năm 2020 2021 phòng GD ĐT Gia Lâm Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát môn Toán năm 2020 - 2021 tại Gia Lâm Hà Nội Đề khảo sát môn Toán năm 2020 - 2021 tại Gia Lâm Hà Nội Ngày Thứ Năm 25 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 năm học 2020 - 2021 tại khu vực này. Đề khảo sát môn Toán cho lớp 10 năm 2020 - 2021 tại phòng GD&ĐT Gia Lâm - Hà Nội bao gồm 01 trang đề với 05 bài toán dạng tự luận. Thời gian làm bài thi là 90 phút. Cấu trúc đề thi này được thiết kế để phản ánh sát nội dung đề tuyển sinh lớp 10 môn Toán của sở Giáo dục và Đào tạo thành phố Hà Nội trong những năm gần đây. Dưới đây là một số câu hỏi mẫu trong đề khảo sát môn Toán năm 2020 - 2021 tại Gia Lâm Hà Nội: Một tàu tuần tra chạy ngược dòng 60 km, sau đó chạy xuôi dòng 48km trên cùng một dòng sông có vận tốc của dòng nước là 2km/h. Hãy tính vận tốc của tàu tuần tra khi nước yên lặng, biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 60 phút. Một bồn nước inox dạng hình trụ có chiều cao 1,8m và diện tích đáy là 1,25m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (bỏ qua bề dày của bồn nước). Trong đường tròn tâm O bán kính R, kẻ đường kính AB. Chứng minh một số tính chất đặc biệt liên quan đến các điểm trên đường tròn và mối quan hệ giữa chúng. Vẽ đường thẳng vuông góc với OC, đường thẳng này cắt các tia CA và CM theo thứ tự tại P và Q. Xác định vị trí của C để diện tích tam giác CPQ nhỏ nhất. Đề khảo sát này đòi hỏi sự tư duy logic, khả năng áp dụng kiến thức và kỹ năng giải quyết vấn đề của thí sinh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tham khảo vào môn Toán năm 2024 2025 sở GD ĐT Phú Thọ
Nội dung Đề tham khảo vào môn Toán năm 2024 2025 sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề tham khảo môn Toán vào lớp 10 năm 2024 - 2025 sở GD&ĐT Phú Thọ Đề tham khảo môn Toán vào lớp 10 năm 2024 - 2025 sở GD&ĐT Phú Thọ Chào mừng quý thầy cô và các em học sinh lớp 9 đến với đề tham khảo kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 - 2025 của sở Giáo dục và Đào tạo tỉnh Phú Thọ. Đề thi bao gồm 02 trang, với tỷ lệ 30% câu hỏi trắc nghiệm khách quan (12 câu) và 70% câu hỏi tự luận (04 câu). Thời gian làm bài là 120 phút, có đáp án và lời giải chi tiết. Trích đoạn từ Đề tham khảo môn Toán năm 2024 - 2025 sở GD&ĐT Phú Thọ: + Cho đường thẳng d: y = mx + 2 và parabol P: y = x^2. a) Cho điểm C có hoành độ là 2 thuộc parabol P. Tìm m để đường thẳng d đi qua C. b) Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt D(x, y) và E(x, y) sao cho 2x + y = 15. + Một mảnh vườn hình chữ nhật có diện tích 150m^2. Biết rằng chiều dài hơn chiều rộng là 5m. Chiều rộng mảnh vườn đó là? + Cho đường tròn tâm O đường kính AB, điểm C cố định trên đoạn thẳng OB (C khác O và B). Điểm M di động trên đường tròn O. Đường thẳng d vuông góc với AB tại C cắt tia AM tại E ở ngoài đường tròn, d cắt đoạn MB ở F. a) Chứng minh các tứ giác AMFC và BCME nội tiếp đường tròn. b) Chứng minh BF//BM, BC//BA và AF vuông góc với EB. c) Tia EB cắt O tại N. Chứng minh A, F, N thẳng hàng. d) Chứng minh đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A. Hãy ôn luyện và chuẩn bị kỹ càng để vượt qua thử thách trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Bình Tân TP HCM
Nội dung Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Bình Tân TP HCM Bản PDF - Nội dung bài viết Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 - 2025 phòng GD&ĐT Bình Tân TP HCM Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 - 2025 phòng GD&ĐT Bình Tân TP HCM Sytu xin gửi đến các thầy cô giáo và các bạn học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 - 2025 của phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh. Đề thi này đi kèm đáp án và lời giải chi tiết để giúp các bạn ôn tập hiệu quả. Bài thi gồm các câu hỏi thú vị như sau: + Trong một phòng thí nghiệm, đoàn tàu đồ chơi di chuyển theo hàm số s(t) = 6t - 9, với s là quãng đường đi được (mét) và t là thời gian (giây). Nếu trong thực tế đoàn tàu di chuyển 12 cm mất 2 giây và mỗi 10 giây nó đi được 52 cm. Hỏi sau 5 giây đoàn tàu di chuyển được bao nhiêu mét? Và cần bao nhiêu giây để đoàn tàu đi từ mẹ bé An đến chỗ bé, khi bé cách mẹ 2,5 mét? + Bạn Vy làm thêm ở tiệm café “Take away NT” và có hợp đồng lương tính theo ngày. Nếu bán đủ 50 ly café, Vy sẽ nhận được lương cơ bản 150,000 đồng. Mỗi ly bán vượt chỉ tiêu, bạn sẽ nhận thưởng 40% so với tiền lời một ly café. Biết hôm đầu tiên Vy làm thêm nhận được 222,000 đồng. Hỏi Vy đã bán bao nhiêu ly café, biết rằng lời một ly là 6,000 đồng? + Trái bóng Telstar có đường kính 22,3cm, với 32 múi da đen và trắng. Tính diện tích bề mặt của trái bóng. Và biết diện tích của mỗi múi da màu đen là 37 cm², mỗi múi da màu trắng là 55,9 cm², hỏi trái bóng có bao nhiêu múi da màu đen và màu trắng? Những câu hỏi này sẽ giúp các bạn luyện tập và nắm vững kiến thức Toán cần thiết cho kỳ thi tuyển sinh sắp tới. File WORD đã được chuẩn bị sẵn sàng cho quý thầy cô giáo để sử dụng trong việc giảng dạy và ôn tập cho học sinh.
Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Tân Bình TP HCM
Nội dung Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Tân Bình TP HCM Bản PDF Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 của phòng GD&ĐT Tân Bình TP HCM là một tài liệu hữu ích dành cho quý thầy cô và các em học sinh lớp 9. Đề thi cung cấp đáp án và lời giải chi tiết, giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.Trên đề thi, có nhiều bài toán thú vị và hấp dẫn, như bài toán về thầy Bảo mua khẩu trang tại nhà thuốc Pharmacity. Thầy Bảo đã mua tổng cộng bao nhiêu hộp khẩu trang? Bài toán về kho hàng nhập gạo cũng rất thú vị, yêu cầu tính lượng gạo trong kho sau mỗi ngày.Ngoài ra, đề thi còn đưa ra một bài toán liên quan đến hiện tượng tự nhiên kỳ lạ trên núi Bà Đen vào ngày 24/11/2022. Bài toán yêu cầu ước tính thể tích của đám mây bao phủ đỉnh núi, tạo ra hiện tượng "mây vờn" mà nhiều người so sánh như một chiếc nón.Nhờ đề thi này, các em học sinh sẽ có cơ hội rèn luyện kỹ năng giải bài toán, tư duy logic và logic hơn trong môn Toán. Đồng thời, cũng giúp các em ôn tập kiến thức một cách hiệu quả để tham gia kỳ thi tuyển sinh vào lớp 10 với tự tin và thành công. Hãy cùng tham gia thử thách và trải nghiệm những bài toán thú vị trên đề thi này!
Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Quận 11 TP HCM
Nội dung Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Quận 11 TP HCM Bản PDF Bộ đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 của phòng Giáo dục và Đào tạo Quận 11, thành phố Hồ Chí Minh đã được Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9. Đề thi cung cấp đáp án và lời giải chi tiết cho từng câu hỏi.Trong đề thi, có một câu hỏi liên quan đến việc mua bán máy tính xách tay. Anh Nghĩa mua lại một chiếc máy tính đã qua sử dụng 2 năm với giá là 21.400.000 đồng. Sau khi sử dụng thêm 2 năm, anh ta quyết định bán lại chiếc máy tính đó với giá chỉ còn 17.000.000 đồng. Anh ta tự hỏi về sự chênh lệch giữa giá mua và giá bán, và nhân viên cửa hàng giải thích về mối liên hệ giữa giá trị của máy tính xách tay và thời gian sử dụng thông qua một hàm số bậc nhất.Đề thi cũng đề cập đến chương trình khuyến mãi của nhà sách A, giảm giá cho khách hàng khi mua tập loại 96 trang do công ty B hoặc công ty C sản xuất. Bạn Hùng và mẹ bạn Lan được đưa ra các câu hỏi về việc mua tập loại 96 trang để trả số tiền ít hơn trong trường hợp chương trình giảm giá của nhà sách A.Cuối cùng, đề thi còn đưa ra câu hỏi về nón lá, biểu tượng đặc trưng của xứ Huế. Câu hỏi yêu cầu tính toán độ dài và diện tích của nón lá dựa trên các thông số về đường kính và chiều cao của chiếc nón.Bộ đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Quận 11 TP HCM chứa đựng những câu hỏi thú vị và bổ ích để học sinh có thể rèn luyện khả năng giải quyết vấn đề và áp dụng kiến thức toán học vào thực tế.