Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Việt Trì - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm 03 trang, hình thức 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 150 phút, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Việt Trì – Phú Thọ : + Một công ty cổ phần cấp nước áp dụng định mức tiêu thụ nước mỗi người là 4m3/người/tháng và đơn giá được cho bởi bảng sau: Lượng nước tiêu thụ (m3) Giá cước (đồng/m3). Đến 4m3/người/tháng 5300. Trên 34m/người/tháng đến 36m/người/tháng 10200. Trên 36m/người/tháng 11400. Gia đình bạn An có 9 người. Trong tháng 7 năm 2017, gia đình bạn An phải trả tiền nước theo hóa đơn là 653430 đồng (hóa đơn này bao gồm thuế giá trị gia tăng (VAT) 5% và 10% phí bảo vệ môi trường). Lượng nước máy mà nhà bạn An đã sử dụng trong tháng 7 năm 2017 là? + Cho nửa đường tròn O R đường kính BC. Điểm A di động trên nửa đường tròn đã cho (A khác BC), vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB AC và nửa đường tròn O R lần lượt tại D E M. Đường thẳng AM cắt đường thẳng BC tại N. a) Chứng minh rằng AME ACN và 3 2 BC BD CE. b) Chứng minh rằng ba điểm D E N thẳng hàng. c) Xác định vị trí của điểm A trên nửa đường tròn đã cho để tam giác ABH có diện tích lớn nhất. + Trên Parabol 24 x P y lấy các điểm PQ có hoành độ lần lượt là 2 và 4. Biết M là điểm nằm trên trục Ox sao cho MP MQ nhỏ nhất. Tọa độ điểm M là?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 cấp thị xã năm 2022 - 2023 phòng GDĐT Ninh Hòa - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp thị xã năm học 2022 – 2023 phòng Giáo dục và Đào tạo Ninh Hòa, tỉnh Khánh Hòa. Trích dẫn Đề thi HSG Toán 9 cấp thị xã năm 2022 – 2023 phòng GD&ĐT Ninh Hòa – Khánh Hòa : + Cho bảy số nguyên tố phân biệt thỏa mãn chia hết cho 2. Chứng minh P1 = 2, P2 = 3, P3 = 5. + Gọi A là một tập hợp con của tập X = {1; 2; 3; …; 2022} thỏa mãn điều kiện A có ít nhất 2 phần tử và nếu x thuộc A, y thuộc A, x > y thì 7y2/(4x – y) thuộc A. Hỏi có bao nhiêu tập hợp A như vậy? + Cho tam giác ABC vuông tại A, điểm D trên cạnh huyền BC (D khác B và C). Gọi E là điểm đối xứng với D qua AB và G là giao điểm của AB với DE. Từ giao điểm H của AB với CE, hạ đoạn thẳng HI vuông góc với BC tại điểm I. Các tia CH và IG cắt nhau tại điểm K. a) Gọi F là điểm đối xứng của D qua AC. Chứng minh rằng khi D di động trên cạnh BC thì đường thẳng EF luôn đi qua một điểm cố định. b) Chứng minh BK vuông góc CE. c) Chứng minh rằng tia KC là tia phân giác của góc AIK.
Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cộng Hòa - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cộng Hòa, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cộng Hòa – Hải Dương : + Tìm tất cả các số nguyên tố p để 4p2 + 1 và 6p2 + 1 cũng là số nguyên tố. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Trên các đoạn thẳng HA, HB, HC lần lượt lấy các điểm M, N, P sao cho BMC = CNA = APB = 90°. a) Chứng minh tam giác ANP cân. b) Gọi S, S1, S2 lần lượt là diện tích các tam giác MBC, ABC và HBC. Chứng minh rằng: S = S1S2 2) Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của góc BAH cắt BH ở D. Gọi M là trung điểm của cạnh AB. Gọi E là giao điểm của MD và AH. Chứng minh rằng: AD // CE. + Cho a, b, c là các số thực dương thỏa mãn a2 + b2 + c2 =< 3. Chứng minh rằng?
Đề thi thử HSG Toán 9 năm 2022 - 2023 trường THCS Lai Vu - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Lai Vu, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử HSG Toán 9 năm 2022 – 2023 trường THCS Lai Vu – Hải Dương : + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm AH, BD cắt AC tại E. Kẻ HK song song với AE (K thuộc BE) a) Chứng minh cos2B = EA/EC. b) Gọi M là điểm đối xứng của A qua B, N thuộc tia đối của tia HA sao cho HN = 2HA. Gọi P là trung điểm của HN. Chứng minh MN vuông góc NC. + Cho tam giác ABC vuông tại A (AB < AC), các đường phân giác trong và ngoài tại đỉnh A của tam giác cắt BC lần lượt tại M, N. Chứng minh 1 1 1 AM AN AB. + Cho các số nguyên dương a, b thỏa mãn: (a – 2021)(b + 2021) = 4 và ba số thực dương x; y; z sao cho xyz = 1. Chứng minh rằng?
Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.