Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hải Hậu Nam Định

Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Hải Hậu Nam Định Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD&ĐT Hải Hậu Nam Định Đề chọn học sinh giỏi lớp 8 môn Toán năm 2021-2022 phòng GD&ĐT Hải Hậu Nam Định Sytu hân hạnh giới thiệu đến quý thầy cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021-2022 của phòng GD&ĐT Hải Hậu, tỉnh Nam Định. Chúng tôi mong muốn nhận được sự quan tâm và hỗ trợ từ tất cả các bên để giúp học sinh phát triển tư duy và kiến thức. Đề thi này nhằm mục đích tìm ra những học sinh có năng khiếu và khả năng xuất sắc trong môn Toán, giúp họ phát triển tốt nhất khả năng của mình. Chúng tôi hy vọng rằng đây sẽ là cơ hội để các em thể hiện sự thông minh, nhanh nhạy và kiên trì trong học tập, từ đó tạo ra những tài năng mới cho xã hội trong tương lai.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 8 cấp trường năm 2018 - 2019 trường THCS Sông Trí - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 cấp trường năm học 2018 – 2019 trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề học sinh giỏi Toán 8 cấp trường năm 2018 – 2019 trường THCS Sông Trí – Hà Tĩnh : + Cho tứ giác ABCD có 0 0 A 100 B 120. Các tia phân giác của góc C và góc D cắt nhau tại E. Các tia phân giác của các góc ngoài tại C và D cắt nhau tại F. Tính các góc E, F của tứ giác DECF. + Cho tam giác ABC, các điểm D, E, F theo thứ tự chia trong các cạnh AB, BC, CA theo tỷ số 1 : 2, các điểm I, K theo thứ tự chia trong các đoạn thẳng ED, FE theo tỷ số 1 : 2. Chứng minh rằng IK // BC. + Đa thức f x khi chia cho x + 1 có số dư là 2. Khi chia cho x − 2 có số dư là 5. Vậy khi chia f x cho 2 2 x x sẽ có số dư là bao nhiêu?
Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi giao lưu học sinh giỏi môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Yên Lạc, tỉnh Vĩnh Phúc. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB > AD. Tia phân giác của góc BAD cắt BD và CD lần lượt tại E và K. Trên cạnh BD lấy điểm H sao cho AE là tia phân giác của góc CAH. Gọi F là giao điểm của HK và AB. a) Chứng minh rằng hai tam giác AHD và BHA đồng dạng. b) Giả sử AB = 12cm, AD = 9cm. Tính độ dài đoạn BF. c) Chứng minh rằng ba điểm C, E, F thẳng hằng. + Ban đầu trên bảng có hai số 1 và 4. Một học sinh thực hiện thay đổi như sau: Mỗi lần chọn hai số a và b trên bảng thì viết thêm số c = ab + a + b lên trên bảng. Hỏi số nhỏ nhất không nhỏ hơn 2019 mà có thể xuất hiện được trên bảng là số nào? + Cho biểu thức a) Rút gọn biểu thức P. b) Tìm tất cả các số nguyên x sao cho P có giá trị là số nguyên tố. c) Với x > 0 thì P không nhận những giá trị nào?
Đề khảo sát HSG huyện Toán 8 năm 2018 - 2019 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát học sinh giỏi huyện môn Toán 8 năm học 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho hình vuông ABCD, điểm H thuộc cạnh BC (H không trùng với B và C). Trên nửa mặt phẳng bờ là BC không chứa hình vuông ABCD vẽ hình vuông CHIK. Gọi M là giao điểm của DH và BK, N là giao điểm của KH và BD. Chứng minh. + Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. + Cho đa thức 4 3 2 B(x) x ax bx cx d. Biết B(1) = 10; B(2) = 20; B(3) = 30. Tính B(12) + B(-8).