Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chuyên) năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa

Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi môn Toán chuyên vào lớp 10 trường Lam Sơn - Thanh Hóa năm học 2023 – 2024 Đề thi môn Toán chuyên vào lớp 10 trường Lam Sơn - Thanh Hóa năm học 2023 – 2024 Sytu xin gửi đến quý thầy cô và các bạn học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi vào lớp chuyên Toán) của trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa, diễn ra vào ngày 27 tháng 05 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p^6 − 1 chia hết cho n. Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Chứng minh tứ giác DEKF nội tiếp đường tròn. Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ. Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh. Đây là những câu hỏi đòi hỏi sự tư duy logic, khả năng suy luận và kỹ năng giải quyết vấn đề của các thí sinh. Hy vọng đề thi sẽ giúp các em thí sinh thử thách bản thân và đạt kết quả cao trong kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định
Nội dung Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định Đề thi thử vào lớp 10 môn Toán THPT năm 2018 của phòng GD và ĐT Giao Thủy – Nam Định bao gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận. Thời gian làm bài là 120 phút, đề thi cung cấp đáp án và lời giải chi tiết cho thí sinh. Trích dẫn một số câu hỏi từ đề thi: Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng là bao nhiêu? Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình gì? Trong hệ tọa độ Oxy, cho Parabol (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. Hỏi khi m = 4, tìm tất cả các hoành độ giao điểm của (d) và (P). Tìm tất cả các giá trị của m sao cho đường thẳng (d) cắt Parabol (P) tại hai điểm có tung độ thỏa mãn √y1.√y2 = 5. Đề thi mang đến cho học sinh một cơ hội để ôn tập và kiểm tra kiến thức, chuẩn bị tốt nhất cho kỳ thi sắp tới. Mong rằng các em sẽ đạt kết quả tốt trong bài thi này!
Đề thi thử vào môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1
Nội dung Đề thi thử vào môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1 Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1 Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1 Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu – Nam Định lần 1 là bài kiểm tra được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận. Bài thi bao gồm 8 câu hỏi trắc nghiệm (chiếm 20% số điểm) và 5 bài toán tự luận (chiếm 80% số điểm). Thời gian làm bài là 120 phút, và đề thi đi kèm đáp án và lời giải chi tiết để thí sinh có thể tự kiểm tra và ôn tập sau khi hoàn thành bài thi. Trích dẫn một số câu hỏi trong đề thi: Đồ thị của hàm số y = (m – 2019)x + m + 2018 (với m là tham số) tạo với trục Ox một góc nhọn khi nào? Hình nón có bán kính đáy là 6cm, chiều cao là 8cm. Tính diện tích xung quanh của hình nón. Hai đường tròn (O) và (O’) tiếp xúc ngoài nhau. Tính số tiếp tuyến chung của hai đường tròn đó. Đề thi này được thiết kế để kiểm tra khả năng giải quyết các bài toán toán học của học sinh, từ các kiến thức cơ bản đến khả năng áp dụng kiến thức vào các tình huống thực tế. Bằng cách ôn tập và làm các bài thi thử như vậy, học sinh có thể nâng cao hiểu biết và kỹ năng giải quyết bài toán của mình, chuẩn bị tốt cho kỳ thi chính thức vào lớp 10.
Đề thi thử vào môn Toán năm 2018 2019 trường Nguyễn Công Trứ Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2018 2019 trường Nguyễn Công Trứ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2018 - 2019 trường Nguyễn Công Trứ Hà Nội Đề thi thử vào môn Toán năm 2018 - 2019 trường Nguyễn Công Trứ Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường Nguyễn Công Trứ - Hà Nội bao gồm 1 trang với 5 câu hỏi trắc nghiệm. Thời gian làm bài là 120 phút, và kỳ thi thử được tổ chức vào ngày 05 tháng 05 năm 2018. Đề thi có đáp án đính kèm. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 - 2019: + Chiều dài của bể bơi là 120m. Trong một đợt tập bơi phòng chống đuối nước ở một trường THCS, mỗi học sinh phải thực hiện bài tập bơi từ đầu này sang đầu kia của bể bơi theo vận tốc quy định. Sau khi bơi được quãng đường đầu, học sinh A giảm vận tốc 1m/s so với vận tốc quy định trên quãng đường còn lại. Tính vận tốc theo quy định biết học sinh A về đến đầu kia của bể bơi chậm hơn quy định là 10 giây. + Cho phương trình x^2 - 6x + 2m + 1 = 0. a) Tìm m để phương trình có 2 nghiệm trái dấu. b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: x_1^2 = x_2 - 4. + Cho a, b là các số thực không âm thỏa mãn: a + b ≤ 1. Chứng minh rằng: a^2.b^2(a^2 + b^2) ≤ 1/32. Đề thi này sẽ giúp các em học sinh thử sức và củng cố kiến thức Toán trước khi bước vào kỳ thi chính thức. Hy vọng các em sẽ vượt qua thử thách này một cách tự tin và thành công!
Đề thi thử vào môn Toán năm 2018 2019 trường THCS Mạc Đĩnh Chi Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2018 2019 trường THCS Mạc Đĩnh Chi Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mạc Đĩnh Chi Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mạc Đĩnh Chi Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mạc Đĩnh Chi - Hà Nội bao gồm 5 bài toán tự luận. Thí sinh sẽ phải làm bài trong thời gian 120 phút. Kỳ thi được tổ chức tại trường vào ngày 5 tháng 5 năm 2018 và đề thi sẽ đi kèm với lời giải chi tiết. Các dạng toán mà thí sinh cần chuẩn bị cho đề thi bao gồm: Tính giá trị biểu thức, rút gọn biểu thức, tìm m. Giải toán bằng cách lập phương trình, hệ phương trình. Giải hệ phương trình vô tỉ. Biện luận phương trình bậc hai theo tham số m. Bài toán hình học phẳng liên quan đến đường tròn. Giải phương trình 2 ẩn. Đề thi này cung cấp cho thí sinh cơ hội để luyện tập và nâng cao kiến thức Toán của mình trước khi bước vào kỳ thi chính thức. Hy vọng rằng các em sẽ đạt kết quả tốt và tự tin khi tham dự kỳ thi sắp tới.