Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi môn Toán lớp 9 THCS Hồng Bàng Đề số 13

Nguồn: onluyen.vn

Xem

Đề học sinh giỏi huyện môn Toán năm 2021 - 2022 phòng GDĐT Di Linh - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2021. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2021 – 2022 phòng GD&ĐT Di Linh – Lâm Đồng : + Cho tam giác ABC, đường cao AH. Gọi E và M lần lượt là trung điểm của AB và BC. Qua B kẻ đường thẳng vuông góc với BC và cắt đường thẳng AC tại D, đường thẳng ME cắt BD tại I. Gọi K là giao điểm của AH và CI. Chứng minh K là trung điểm của AH. + Cho a, b,c đôi một khác nhau thỏa: a² – b = b² – c = c² – a. Chứng minh:(a + b)(b + c)(c + a) = 1. + Gia đình bác An có nuôi 3 con bò sữa để tăng thêm thu nhập cho gia đình, trung bình mỗi con bò cho khoảng 2500 lít sữa/năm và bán được khoảng 15500 đồng/lít. Biết rằng tiền chi phí đầu tư, chăm sóc mỗi năm bằng 40% tiền bán sữa. Hãy tính xem mỗi năm gia đình bác An thu nhập thêm được bao nhiêu tiền?
Đề học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 19 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Cho tam giác ABC nhọn (AB < AC), nội tiếp trong đường tròn (O). Dựng các đường cao AD, BE, CF của tam giác ABC. Đường thẳng EF cắt đường tròn (O) tại M và N (M, N lần lượt nằm trên cung nhỏ AB, AC). Gọi I là giao điểm của BM và DF, J là giao điểm của CN và DE. a) Chứng minh EB là tia phân giác của DEM. b) Chứng minh AM = AN. c) Chứng minh tứ giác MNJI nội tiếp trong đường tròn. + Tìm tất cả các số tự nhiên sao cho tổng của số đó với tổng các chữ số của nó bằng 2023. + Cho ba số thực dương x y z thỏa mãn xyz >= 1. Tìm giá trị nhỏ nhất của biểu thức H.
Đề học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Cho các số thực a, b, c thỏa mãn a khác 0 và 2a + 3b + 6c = 0. Chứng minh rằng phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 và tìm giá trị nhỏ nhất của biểu thức |x1 – x2|. + Tìm các cặp nghiệm nguyên dương (x;y) thỏa mãn phương trình: x2 + y2 + 2(1 + y)x = 14y – 1. + Cho nửa đường tròn đường kính BC = 2R và A là điểm di động trên nửa đường tròn đó. Gọi D là hình chiếu vuông góc của A lên BC và M, N lần lượt là tâm đường tròn nội tiếp các tam giác ABD, ACD. a) Chứng minh: CN vuông góc với AM. b) Chứng minh: DMN và DBA là hai tam giác đồng dạng. c) Gọi d là đường thẳng đi qua A và vuông góc với MN. Chứng minh rằng d luôn đi qua một điểm cố định. d) Tìm vị trí của điểm A để đoạn MN có độ dài lớn nhất và tính độ dài lớn nhất đó theo R.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi (HSG) môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Tuyên Quang. Trích dẫn đề học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Tuyên Quang : + Cho tam giác ABC cân tại A. Gọi D là trung điểm của đoạn thẳng AC. Phân giác trong của góc BAC cắt đường tròn ngoại tiếp tam giác BCD tại E (E thuộc miền trong tam giác ABC). Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại F khác B. Đường thẳng AF cắt BE tại I và CI cắt BD tại K. a) Chứng minh rằng BI là tia phân giác của góc ABK. b) Gọi M là trung điểm của BC. Chứng minh rằng tứ giác AFMC nội tiếp đường tròn. c) Chứng minh rằng AD2 = DK.DB. + Cho các số nguyên dương a b n không chia hết cho số nguyên tố lẻ p. Chứmg minh rằng A không chia hết cho p. + Trên một tờ giấy A4 kích thước 210mm x 297mm, bạn An vẽ 30 đường tròn bán kính 1cm. Chứng minh rằng sau khi bạn An vẽ 30 đường tròn, bạn Bình luôn dựng được 5 hình vuông có độ dài các cạnh là 2cm mà không có điểm chung với bất kỳ đường tròn nào và hai hình vuông bất kỳ cũng không giao nhau.