Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm luyện thi THPT Quốc gia 2018 - Lê Bá Bảo

Bài viết chuyên đề nguyên hàm được biên soạn bởi thầy Lê Bá Bảo gồm 43 trang nằm trong kế hoạch ôn tập luyện thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu: Nguyên hàm và các phương pháp xác định nguyên hàm I – Tổng quan lý thuyết 1. Nguyên hàm Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K. Tính chất của nguyên hàm: + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K. + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số. 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K. 4. Bảng nguyên hàm của một số hàm số sơ cấp [ads] II – Phương pháp tính nguyên hàm 1. Phương pháp đổi biến số: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì: ∫f(u(x))u'(x)dx = F(u(x)) + C 2. Phương pháp nguyên hàm từng phần: Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì: ∫u(x)v'(x)dx = u(x)v(x) – ∫u'(x)v(x)dx III – Bài tập tự luận minh họa 1. Nhóm kỹ năng 1. Một số phép biến đổi cơ bản 2. Nhóm kỹ năng 2. Nguyên hàm các hàm số phân thức 3. Nhóm kỹ năng 3. Nguyên hàm từng phần + Dạng 1. I = ∫f(x)sinxdx hoặc I = ∫f(x)cosxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = sinxdx (hoặc cosxdx). + Dạng 2. I = ∫f(x)e^xdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = e^x.dx. + Dạng 3. I = ∫f(x)logxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = logx và dv = f(x)dx 4. Nhóm kỹ năng 4. Đổi biến 5. Nhóm kỹ năng 5. Dùng vi phân IV – Bài tập trắc nghiệm minh họa: Tuyển chọn các bài toán trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết. V – Bài tập trắc nghiệm tự luyện

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Tích phân - Đặng Thành Nam
Chuyên đề tích phân hướng dẫn phương pháp giải tích phân kèm theo ví dụ minh họa có lời giải chi tiết và các bài tập tự luyện. Các bài toán tích phân trong đề thi TSĐH được đánh giá là bài toán quan trọng, luôn xuất hiện dưới dạng tính tích phân trực tiếp hoặc là xác định diện tích, thể tích giới hạn bởi các đường cong. Để làm tốt dạng toán này học sinh nên lưu ý nhớ và vận dụng lịnh hoạt công thức các nguyên hàm cơ bản, cách xác định công thức tính thể tích và diện tích giới hạn bởi các đường cong. Hai phương pháp cơ bản được sử dụng xuyên suốt cho các bài toán tích phân là đổi biến và tích phân từng phần. [ads] Các dạng tích phân được đề cập : + Một số bài toán cơ bản + Tích phân các hàm phân thức hữu tỉ + Một số bài toán tích phân có mẫu số là đa thức + Tích phân hàm vô tỷ + Phương pháp tích phân từng phần + Tích phân với hàm số lượng giác + Dạng toán bổ sung + Tích phân của hàm tuần hoàn + Tích phân liên kết + Phương pháp đổi biến số không làm thay đổi cận + Đổi biến số dưới dạng lượng giác hóa + Bài toán diện tích hình phẳng và thể tích vật tròn xoay
Chuyên đề Tích phân - Thầy Trần Đình Cư - TP Huế
Tài liệu gồm 110 trang tóm tắt lý thuyết, phân dạng và hướng dẫn giải các bài tập nguyên hàm, tích phân và ứng dụng. Các chuyên mục có trong chuyên đề tích phân của thầy Trần Đình Cư gồm có: A. Nguyên hàm B. Tích phân C. Phân loại và phương pháp tính tích phân – Vấn đề 1: Phép thay biến – Vấn đê 2: Tích phân bằng phương pháp lượng giác hóa – Vấn đề 3: Tích phân lượng giác – Vấn đề 4: Tích phân có chứa giá trị tuyệt đối – Vấn đề 5: Tích phân hàm hữu tỉ [ads] – Vấn đề 6: Tích phân một số hàm đặc biệt – Vấn đề 7: Tích phân từng phần – Vấn đề 8: Ứng dụng tích phân tính diện tích hình phẳng – Vấn đề 9: Tính thể tích vật thể tròn Một số bài tập cần làm trước khi thi Phương pháp đặt ẩn phụ không làm thay đổi cận tích phân Sai lầm thường gặp trong tính tích phân Đề thi đại học từ 2009-2012
Công cụ tính nguyên hàm trực tuyến
Tìm nguyên hàm trực tuyến theo chỉ dẫn bên dưới: + Bước 1: Mở trang công cụ tìm nguyên hàm trực tuyến tại đây . + Bước 2: Nhập hàm cần tính nguyên hàm vào khung tính theo dạng: int f(x) dx , trong đó f(x) là hàm cần tìm nguyên hàm. Ví dụ : Cần tìm nguyên hàm của hàm sinx ta nhập int sinx dx. Nhấn Enter để công cụ bắt đầu tính toán. Xem kết quả bên dưới ô tính. Cách nhập các hàm phức tạp: Để gõ các hàm phức tạp như hàm chưa lũy thừa, phân số, dấu căn … ta gõ theo ngôn ngữ Latex Toán học. Ví dụ : 1. Phân số a/b 2. Lũy thừa a^b 3. Căn bậc hai của a, ta nhập sqrt(a) 4. Căn bậc n của a, ta có thể nhập a^(1/n)
5 bài tập Tích phân dạng đặc biệt có lời giải - Trần Sĩ Tùng
Tài liệu chỉ gồm 2 trang với 5 bài toán tích phân dạng đặc biệt có lời giải chi tiết. Đây là dạng toán tích phân khá hay, được giải bằng cách các phương pháp độc đáo.