Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nam

Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nam Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nam Chào các thầy cô giáo và các em học sinh! Hôm nay, Sytu rất hân hạnh giới thiệu đến quý vị đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Để chuẩn bị cho kỳ thi, hãy cùng tìm hiểu một số câu hỏi trong đề thi như sau: 1. Với mặt phẳng tọa độ Oxy, parabol (P) có phương trình y = x^2 và đường thẳng (d) có phương trình y = 2mx - m^2 - m - 2 (với m là tham số). Hãy tìm tọa độ điểm M thuộc (P) biết điểm M có hoành độ bằng -3. 2. Tìm điều kiện của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt. Xác định m sao cho x1y2 + x2y1 = 2m^3 + 6. 3. Trong tháng 4 năm 2023, hai hộ gia đình bác An và bác Bình dùng hết tổng cộng 500 nghìn đồng tiền điện. Tháng 5, họ tiết kiệm được 65 nghìn đồng tiền điện so với tháng 4. Hỏi mỗi hộ gia đình dùng hết bao nhiêu đồng tiền điện trong tháng 4? 4. Cho đường tròn (O;R) và một điểm S nằm ngoài đường tròn. Kẻ tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm). Chứng minh tứ giác SAOB nội tiếp và tính độ dài đoạn thẳng OE khi SO = R^5 và MN = R^2. Mong rằng thông tin trên sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Phước Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT Bình Phước là một bài thi với nội dung phong phú và đa dạng. Đề bao gồm 6 bài toán dạng tự luận, được thi sinh phải giải quyết trong thời gian 150 phút. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 19 tháng 07 năm 2020. Một trong những bài toán trong đề tuyển sinh là "Tìm tất cả các giá trị của m để đường thẳng (d): y = 2x - m cắt parabol (P): y = x^2 tại hai điểm phân biệt có hoành độ dương." Đây là một bài toán đòi hỏi thí sinh phải áp dụng kiến thức về đường thẳng và parabol để giải quyết. Bài toán khác "Tìm tất cả các giá trị của m để phương trình x^2 + mx + 8 = 0 và phương trình x^2 + x + m = 0 có ít nhất một nghiệm chung" đòi hỏi sự hiểu biết sâu rộng về tính chất của các phương trình bậc hai. Ngoài ra, bài toán "Chứng minh rằng với a, b, c là các số thực khác 0 thì tồn tại ít nhất một trong các phương trình có nghiệm" là bài tập thách thức đòi hỏi sự logic và sáng tạo trong suy luận. Từ những bài toán trong đề tuyển sinh môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Bình Phước, thí sinh sẽ có cơ hội thể hiện kiến thức và kỹ năng của mình một cách toàn diện và sáng tạo.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đắk Nông
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Đắk Nông Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Đắk Nông Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Đắk Nông bao gồm 01 trang với 06 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Trích đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT Đắk Nông: Một tô chạy từ A đến B với quãng đường 80 km. Vì trời mưa, ô tô phải chạy chậm hơn vận tốc dự định 15 km/h. Để đến B đúng thời gian dự định, ô tô phải tăng vận tốc 10km/h. Tính thời gian dự định của ô tô. (Giả sử xe chạy liên tục không nghỉ). Cho đường tròn (O; R), đường thẳng d không đi qua tâm O cắt đường tròn tại A và B, trên tia đối của tia AB lấy điểm M. Kẻ hai tiếp tuyến MC và MD với đường tròn (O) từ M (C; D là tiếp điểm). H là trung điểm của AB. Chứng minh M, D, O, H cùng nằm trên một đường tròn. Chứng minh I là tâm đường tròn nội tiếp tam giác MCD. Vẽ đường thẳng qua O vuông góc OM cắt MC, MD lần lượt ở P, Q. Tìm vị trí của M trên d sao cho diện tích tam giác MPQ nhỏ nhất. Cho x, y dương, x+y = 1. Tìm giá trị nhỏ nhất của A = 1/x^2 + y^2 + 1/xy.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT An Giang
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT An Giang Đề tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GD&ĐT An Giang Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 của sở GD&ĐT An Giang bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút, kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GD&ĐT An Giang: Cho hàm số \( y = (\sqrt{3} - 1)x + 1 \) có đồ thị là đường thẳng d. Vẽ đồ thị d của hàm số đã cho trên mặt phẳng tọa độ. Đường thẳng d₀ song song với d và đi qua điểm có tọa độ (0;3). Đường thẳng d và d₀ cắt trục hoành lần lượt tại A và B, cắt trục tung lần lượt tại D và C. Tính diện tích tứ giác ABCD. Trên đường tròn đường kính AD lấy hai điểm B và C khác phía với AD sao cho BAC = 60◦. Từ B kẻ BE vuông góc với AC (E ∈ AC). Chứng minh rằng hai tam giác ABD và BEC đồng dạng. Biết EC = 3cm. Tính độ dài dây BD. Trên mỗi đỉnh của một đa giác có 12 cạnh người ta ghi một số, mỗi số trên một đỉnh là tổng của hai số ở hai đỉnh liền kề. Biết hai số ở hai đỉnh A5 và A9 là 10 và 9. Tìm số ở đỉnh A1.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Lạng Sơn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút (không tính thời gian phát đề). Đề thi này dành cho các thí sinh muốn thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn: Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm là 10101 điểm đã cho và bán kính đều bằng √2 cm. Liệu có 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm không? Tại sao? Đây là những bài toán đặc sắc đòi hỏi sự logic, khéo léo và kiến thức vững chắc trong môn Toán. Thí sinh cần phải rèn luyện kỹ năng tư duy và giải quyết vấn đề để có thể hoàn thành đề thi một cách tốt nhất.