Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT 2020 môn Toán lần 1 trường chuyên Phan Ngọc Hiển - Cà Mau

Còn chưa đầy 03 tháng nữa là kỳ thi THPT Quốc gia môn Toán sẽ chính thức diễn ra, bây giờ là thời điểm các em học sinh khối 12 cấp tốc ôn tập, luyện đề. giới thiệu đến các em đề thi thử THPT 2020 môn Toán lần 1 trường chuyên Phan Ngọc Hiển – Cà Mau, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử THPT 2020 môn Toán lần 1 trường chuyên Phan Ngọc Hiển – Cà Mau : + Một sợi dây kim loại dài a cm. Người ta cắt sợi dây đó thành hai đoạn, trong đó một đoạn có độ dài x cm được uốn thành đường tròn và đoạn còn lại được uốn thành hình vuông (a > x > 0). Tìm x để hình vuông và hình tròn tương ứng có tổng diện tích nhỏ nhất. + Xếp ngẫu nhiên 10 học sinh trường chuyên Phan Ngọc Hiển – Cà Mau gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng. [ads] + Trong không gian Oxyz, cho điểm M(1;1;1). Mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A(a;0;0), B(0;b;0), C(0;0;c) thỏa mãn OA = 2OB và thể tích của khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S = a + 2b + 3c. + Cho y = (m – 3)x^3 + 2(m^2 – m – 1)x^2 + (m + 4)x – 1. Gọi S là tập tất cả các giá trị nguyên dương của m để đồ thị hàm số đã cho có hai điểm cực trị nằm về hai phía của trục Oy. Hỏi S có bao nhiêu phần tử? + Cho hàm số y = (x + b)/(ax – 2) (ab khác -2). Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d: 3x + y – 4 = 0. Khi đó giá trị của a – 3b bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lần 1 môn Toán khối 12 năm học 2017 - 2018 trường THPT Thạch Thành I - Thanh Hóa
Đề thi KSCL lần 1 môn Toán khối 12 năm học 2017 – 2018 trường THPT Thạch Thành I – Thanh Hóa gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Từ một mảnh giấy hình vuông cạnh a, người ta gấp thành hình lăng trụ theo hai cách sau: Cách 1. Gấp thành 4 phần đều nhau rồi dựng lên thành một hình lăng trụ tứ giác đều có thể tích là V1 (Hình 1). Cách 2. Gấp thành 3 phần đều nhau rồi dựng lên thành một hình lăng trụ tam giác đều có thể tích là V2 (Hình 2). Tính tỉ số k = V1/V2 A. k = 3√3/8 B. k = 3√3/2 C. k = 4√3/9 D. k = 3√3/4 [ads] + Một người cần làm một hình lăng trụ tam giác đều từ tấm nhựa phẳng để có thể tích là 6√3 cm3. Để ít hao tốn vật liệu nhất thì cần tính độ dài các cạnh của khối lăng trụ tam giác đều này bằng bao nhiêu? A. Cạnh đáy bằng 4√3 cm và cạnh bên bằng 1/2 cm B. Cạnh đáy bằng 2√6 cm và cạnh bên bằng 1 cm C. Cạnh đáy bằng 2√2 cm và cạnh bên bằng 3 cm D. Cạnh đáy bằng 2√3 cm và cạnh bên bằng 2 cm + Một người xây nhà xưởng hình hộp chữ nhật có diện tích mặt sàn là 1152 m2 và chiều cao cố định. Người đó xây các bức tường xung quanh và bên trong để ngăn nhà xưởng thành ba phòng hình chữ nhật có kích thước như nhau (không kể trần nhà). Vậy cần phải xây các phòng theo kích thước nào để tiết kiệm chi phí nhất (bỏ qua độ dày các bức tường). A. 16m x 24m B. 8m x 48m C. 12m x 32m D. 24m x 32m
Đề thi KSCL ôn thi THPT Quốc gia Toán 12 lần 1 năm học 2017 - 2018 trường Yên Lạc - Vĩnh Phúc
Đề thi KSCL ôn thi THPT Quốc gia Toán 12 lần 1 năm học 2017 – 2018 trường Yên Lạc – Vĩnh Phúc gồm 12 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Khẳng định nào sau đây đúng? A. Nếu hai mặt phẳng (P) và (Q) lần lượt chứa hai đường thẳng song song thì song song với nhau B. Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trên mặt phẳng này đều song song với mọi đường thẳng nằm trên mặt phẳng kia C. Hai mặt phẳng phân biệt không song song thì cắt nhau D. Hai mặt phẳng cùng song song với một đường thẳng thì song song với nhau [ads] + Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC vuông tại B. Vẽ SH ⊥ (ABC), H ∈ (ABC). Khẳng định nào sau đây đúng? A. H trùng với trực tâm tam giác ABC B. H trùng với trọng tâm tam giác ABC C. H trùng với trung điểm của AC D. H trùng với trung điểm của BC + Anh Minh muốn xây dựng một hố ga không có nắp đạy dạng hình hộp chữ nhật có thể tích chứa được 3200 cm3, tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2. Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất. A. 170cm2 B. 160cm2 C. 150cm2 D. 140cm2
Đề thi thử THPT Quốc gia môn Toán 2018 lần 1 trường THPT Sơn Tây - Hà Nội
Đề thi thử THPT Quốc gia môn Toán 2018 lần 1 trường THPT Sơn Tây – Hà Nội gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong trò chơi “Chiếc nón kỳ diệu” chiếc kim của bánh xe có thể dừng lại ở một trong 6 vị trí với khả năng như nhau. Tính xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau. A. 5/36 B. 5/9 C. 5/54 D. 1/36 [ads] + Cho hàm số y = x(1 – x)(x^2 + 1) có đồ thị (C). Mệnh đề nào dưới đây đúng? A. (C) cắt trục hoành tại 3 điểm phân biệt B. (C) không cắt trục hoành C. (C) cắt trục hoành tại 2 điểm phân biệt D. (C) cắt trục hoành tại 1 điểm + Chọn khẳng định sai. Trong một khối đa diện A. Mỗi đỉnh là đỉnh chung của ít nhất 3 mặt B. Mỗi mặt có ít nhất 3 cạnh C. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt D. Hai mặt bất kì luôn có ít nhất một điểm chung
Đề thi KSCĐ lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Phạm Công Bình - Vĩnh Phúc
Đề thi khảo sát chuyên đề (KSCĐ) lần 1 năm học 2017 – 2018 môn Toán 12 trường THPT Phạm Công Bình – Vĩnh Phúc gồm 6 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án. Trích dẫn đề thi : + Một ngọn hải đăng đặt tại vị trí A có khoảng cách đến bờ biển AB = 5km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng 7km. Người canh hải đăng có thể chèo đò từ A đến M trên bờ biển với vận tốc 4 km/h rồi đi bộ đến C với vận tốc 6 km/h. Vị trí của điểm M cách B một khoảng bao nhiêu để người đó đi đến kho nhanh nhất? A. (14 + 5√5)/12 km B. 2√5 km C. 0 km D. 7 km [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai khối chóp có hai đáy là tam giác đều bằng nhau thì thể tích bằng nhau B. Hai khối đa diện có thể tích bằng nhau thì bằng nhau C. Hai khối đa diện bằng nhau có thể tích bằng nhau D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau + Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Phép vị tự biến tam giác A’B’C’ thành tam giác ABC là: A. Phép vị tự tâm G, tỉ số k = 2 B. Phép vị tự tâm G, tỉ số k = -2 C. Phép vị tự tâm G, tỉ số k = -3 D. Phép vị tự tâm G, tỉ số k = 3