Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội Đề khảo sát lớp 9 môn Toán tháng 1 năm 2020 trường THCS Phúc Diễn Hà Nội Vào thời điểm trước kỳ nghỉ Tết Nguyên Đán, học sinh lớp 9 của trường THCS Phúc Diễn, quận Bắc Từ Liêm, thành phố Hà Nội đã tham gia kỳ thi kiểm tra khảo sát môn Toán tháng 1 năm 2020. Đề khảo sát Toán lớp 9 tháng 1 năm 2020 tại trường THCS Phúc Diễn – Hà Nội bao gồm tổng cộng 04 bài toán tự luận, với thời gian làm bài là 90 phút. Trích dẫn đề khảo sát Toán lớp 9 tháng 1 năm 2020 trường THCS Phúc Diễn – Hà Nội: Cho hàm số y = (m + 1)x - 2 có đồ thị là đường thẳng d. a) Tìm giá trị của m để đồ thị hàm số d cắt đồ thị hàm số y = x + 3 tại một điểm có tung độ là 2. b) Vẽ đồ thị của hàm số tìm được ở câu a. Tính diện tích của tam giác được tạo bởi đồ thị hàm số với hai trục tọa độ. Giải bài toán bằng cách lập hệ phương trình: Hai tổ sản xuất trong tháng đầu sản xuất tổng cộng 300 sản phẩm. Sang tháng thứ hai, tổ 1 tăng sản lượng lên 25%, trong khi tổ 2 giảm 10% so với tháng đầu. Kết quả là cả hai tổ sản xuất được 5 sản phẩm nhiều hơn so với tháng trước. Hãy tính số sản phẩm mỗi tổ sản xuất trong tháng đầu. Với đường tròn tâm O bán kính R và điểm A ở ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn tại B. Kẻ đường kính BC và nối AC cắt đường tròn tại E. Chứng minh rằng: EC.AC = 4R^2. Chứng minh rằng: MC || AO. Chứng minh rằng: KC là tiếp tuyến của đường tròn. Chứng minh rằng: BC là tiếp tuyến của đường tròn đường kính AK. Các học sinh đã thể hiện sự nỗ lực và tư duy logic trong quá trình giải các bài toán này, từ đó cống hiến cho việc học tập và phát triển của mình. Kỳ thi đã giúp đánh giá và định hình kiến thức của học sinh, từ đó giúp họ chuẩn bị tốt hơn cho các thử thách sau này.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa.
Đề KSCL Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Như Thanh - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán học sinh dự thi vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Như Thanh – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = ax + (b – 1). Tìm a, b biết đường thẳng (d) đi qua điểm A(2;1) và cắt trục tung tại điểm có tung độ bằng -3. + Cho phương trình 2 2 x 6x 6m m 0 (với m là tham số). Tìm m để phương trình đã cho có hai nghiệm 1 x 2 x thỏa mãn: 33 2 12 1 1 x x 2x 12x 72 0. + Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C (C khác M). Kẻ MH vuông góc với BC (H thuộc BC). 1. Chứng minh rằng BOMH là tứ giác nội tiếp. 2. MB cắt OH tại E. Chứng minh ME.MH = BE.HC. 3. Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K (K khác M). Chứng minh rằng ba điểm C, K, E thẳng hàng.
Đề KSCL Toán ôn thi vào 10 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 20 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán ôn thi vào 10 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho đường thẳng (d y ax b). Tìm a b biết (d) cắt trục hoành tại điểm có hoành độ bằng 3 và (d) song song với đường thẳng y x 2 6. + Cho phương trình 2 2 x mx m 1 3 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt 1 x 2 x (x x 1 2) thỏa mãn 2 1 12 x x 3 13. + Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2 3 AI OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE AC AI IB AI và MA là tiếp tuyến đường tròn ngoại tiếp tam giác MEC. c) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Đề KSCL Toán thi vào 10 năm 2023 - 2024 trường THPT Quảng Xương 4 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Quảng Xương 4, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán thi vào 10 năm 2023 – 2024 trường THPT Quảng Xương 4 – Thanh Hoá : + Trong hệ toạ độ Oxy cho điểm A(2;2), đường thẳng dy x 4 và parabol 2 P y ax. Tìm a để parabol 2 P y ax đi qua điểm A. Với giá trị a tìm được, hãy xác định tọa độ điểm B là giao điểm thứ hai của (d) và (P). + Cho phương trình bậc hai 2 x xm 25 0 (m là tham số) 1) Giải phương trình khi m = 3. 2) Tìm giá trị của tham số m phương trình có 2 nghiệm 1 2 x x phân biệt và thỏa mãn 2 12 1 2 xx x m x 5 3 10115. + Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA MB (A B là tiếp điểm) và một cát tuyến qua M cắt đường tròn tại C D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1) Chứng minh tứ giác OAMB nội tiếp. 2) Chứng minh MC MD ME MO. 3) Giả sử OM R 3. Tìm diện tích lớn nhất của tứ giác MADB.