Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 12 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 3

Nội dung Đề KSCL lớp 12 môn Toán ôn thi THPTQG năm 2018 2019 trường chuyên Vĩnh Phúc lần 3 Bản PDF Vừa qua, trường THPT chuyên Vĩnh Phúc đã tiếp tục tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2018 – 2019, đây đã là lần thứ 3 trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi này, mục đích nhằm giúp học sinh được rèn luyện, thử sức thường xuyên để củng cố và nâng cao kiến thức trước khi bước vào kỳ thi chính thức THPT Quốc gia năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. Sytu xin giới thiệu đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL Toán lớp 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3, đề bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo với 50 câu trắc nghiệm khách quan, thời gian làm bài thi môn Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề KSCL Toán lớp 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3 : + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tinh tanα khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. + Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA + OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC? + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình vẽ. Mệnh đề nào sau đây là đúng? A. Hàm số y = f(x) có 1 điểm cực tiểu và không có cực đại. B. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu. C. Hàm số y = f(x) có 1 điểm cực đại và không có cực tiểu. D. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL lần 1 học kỳ 2 Toán 12 năm 2023 - 2024 trường THPT Bình Giang - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 1 học kỳ 2 môn Toán 12 năm học 2023 – 2024 trường THPT Bình Giang, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm mã đề 121 – 122 – 123 – 124. Trích dẫn Đề KSCL lần 1 học kỳ 2 Toán 12 năm 2023 – 2024 trường THPT Bình Giang – Hải Dương : + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D AB AD a CD a 2. Hình chiếu của đỉnh S lên mặt (ABCD) trùng với trung điểm của BD. Biết thể tích khối chóp S ABCD bằng 3 2 2 a. Khoảng cách từ điểm A đến mặt phẳng (SBC) bằng? + Cho hàm số 4 2 y f x ax bx c có đồ thị (C). Biết f 1 0. Tiếp tuyến d tại điểm có hoành độ x = −1 của (C) cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2. Gọi 1 2 S S là diện tích hình phẳng. Tính 2 S biết 1 401 2022. + Một tổ có 10 học sinh (6 nam và 4 nữ). Chọn ngẫu nhiên 2 học sinh, tính xác suất sao cho 2 học sinh được chọn đều là nữ?
Đề KSCL lần 1 Toán 12 năm 2023 - 2024 trường THPT Triệu Sơn 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Triệu Sơn 4, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề KSCL lần 1 Toán 12 năm 2023 – 2024 trường THPT Triệu Sơn 4 – Thanh Hóa : + Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí. + Anh An mới đi làm, hưởng lương 8 triệu đồng một tháng và sẻ được nhận lương vào cuối tháng làm việc. An kí hợp đồng với ngân hàng trích tự động 1 10 tiền lương của mình mỗi tháng để gửi vào tài khoản tiết kiệm, lãi suất 0,45%/tháng theo thể thức lãi kép. Kể từ tháng thứ 7, anh An được tăng lương lên mức 8 triệu 500 nghìn đồng mỗi tháng. Sau một năm đi làm, tài khoản tiết kiệm của anh An có bao nhiêu tiền ( Đơn vị: triệu đồng, kết quả lấy đến 3 chữ số sau dấu phẩy). + Trong không gian cho hai đường thẳng chéo nhau d và ∆ vuông góc với nhau và nhận AB = a làm đoạn vuông góc chung (A d B ∆). Trên d lấy điểm M, trên ∆ lấy điểm N sao cho AM a BN a 24. Gọi I là tâm mặt cầu ngoại tiếp tứ diện ABMN. Khoảng cách giữa hai đường thẳng AM và BI là?
Đề KSCL Toán 12 thi TN 2024 lần 1 trường THPT Hậu Lộc 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm học 2023 – 2024 lần 1 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 001 – 002. Trích dẫn Đề KSCL Toán 12 thi TN 2024 lần 1 trường THPT Hậu Lộc 4 – Thanh Hóa : + Cho hàm số 3 2 f x ax bx c ln 1 với abc là các số thực dương, biết f f (1) 3 (5) 2. Xét hàm số gt f t m 3 (3 2) gọi S là tập hợp tất cả các giá trị thực của m sao cho [-1;1] max 10 g t. Số phần tử của S là? + Cho hình nón đỉnh S góc ở đỉnh bằng 120°, bán kính đáy bằng R a 3 3. Mặt phẳng (P) đi qua đỉnh S cắt nón theo thiết diện là một tam giác. Khi diện tích thiết diện lớn nhất, góc giữa thiết diện và mặt đáy của hình nón bằng? + Cho lăng trụ đứng ABC A B C có đáy là tam giác ABC là tam giác vuông cân tại A cạnh BC a. Gọi M là trung điểm của cạnh AA′ biết hai mặt phẳng MBC và MBC vuông góc với nhau, thể tích khối lăng trụ ABC A B C bằng?
Đề KSCL TN Toán 12 lần 1 năm 2023 - 2024 trường THPT Triệu Sơn 5 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng ôn thi tốt nghiệp môn Toán 12 lần 1 năm học 2023 – 2024 trường THPT Triệu Sơn 5, tỉnh Thanh Hóa; đề thi có đáp án mã đề 121 – 122 – 123 – 124 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn Đề KSCL TN Toán 12 lần 1 năm 2023 – 2024 trường THPT Triệu Sơn 5 – Thanh Hóa : + Một cơ sở sản suất đồ gia dụng được đặt hàng làm các chiếc hộp kín hình trụ bằng nhôm đề đựng rượu có thể tích là 3 V a 28π (a > 0). Để tiết kiệm sản suất và mang lại lợi nhuận cao nhất thì cơ sở sẽ sản suất những chiếc hộp hình trụ có bán kính là R sao cho diện tích nhôm cần dùng là ít nhất. Tìm R. + Cho hàm số 43 2 3 4 24 48 x fx e m. Gọi A B lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên [0;ln2]. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [−23;10) thỏa mãn A B 3. Tổng các phần tử của tập S bằng? + Cho khối lăng trụ đứng ABC A B C có đáy ABC là tam giác vuông cân tại C AB a 2 và góc tạo bởi hai mặt phẳng (ABC′) và (ABC) bằng 60°. Gọi M N lần lượt là trung điểm của A C và BC. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Thể tích của phần nhỏ bằng?