Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia lớp 12 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho x, y là các số nguyên dương lớn hơn 2 và A = y(4y + 5/x) – 1/y + x. Biết rằng A là một số nguyên dương. Chứng minh rằng A là số chính phương. + Cho a, b, c, m là các số nguyên dương và a, b, c không vượt quá n. Giả sử phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 thoả mãn |x1 – x2| < 1/n. Chứng minh rằng nó có ít nhất hai ước số là số nguyên tố. + Cho tam giác nhọn không cân ABC, (I) là đường tròn nội tiếp. Gọi D, E, F theo thứ tự là tiếp điểm của (I) và  BC, CA, AB. Gọi A’, B’, C’ lần lượt là điểm đối xứng của A, B, C qua EF, FD, DE. K là trực tâm của tam giác DEF. a) Chứng minh rằng các tam giác DEF, A’B’C’ có diện tích bằng nhau. b) Giả sử ba đường thẳng DA’, EB’, FC’ đôi một cắt nhau tạo thành tam giác XYZ. Chứng minh rằng trực tâm của tam giác XYZ là trung điểm của KI.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2018 - 2019 sở GDĐT Bắc Giang
Thứ Bảy ngày 16 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 12 năm học 2018 – 2019, đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Bắc Giang được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận, trong đó phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2018 – 2019 sở GD&ĐT Bắc Giang : + Cho hai đường thẳng Ax, By chéo nhau và vuông góc với nhau, có AB là đoạn vuông góc chung của hai đường thẳng đó và AB = a. Hai điểm M và N lần lượt di động trên Ax và By sao cho MN = b. Xác định độ dài đoạn thẳng AM theo a và b sao cho thể tích tứ diện ABMN đạt giá trị lớn nhất. [ads] + Trong không gian Oxyz, cho các điểm A(1;0;0), B(-2;0;3), M(0;0;1) và N(0;3;1). Mặt phẳng (P) đi qua các điểm M, N sao cho khoảng cách từ điển B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Có bao nhiêu mặt phẳng (P) như vậy? A. Có vô số mặt phẳng (P). B. Có hai mặt phẳng (P). C. Chỉ có một mặt phẳng (P). D. Không có mặt phẳng (P) nào. + Cho tập hợp S = {1;2;3;4;5;6;7;8;9;10}. Hỏi có bao nhiêu cách chia tập S thành ba tập con khác rỗng sao cho trong mỗi tập con đó không có hai số nguyên liên tiếp nào?
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2018 - 2019 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Đồng Tháp; đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2019.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2018 - 2019 sở GDĐT Bắc Ninh
Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2018 – 2019, đây là kỳ thi nhằm phát hiện và tuyển chọn những em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bắc Ninh, các em được chọn sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh. Đề thi học sinh giỏi tỉnh Toán 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh có mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + . Mệnh đề nào dưới đây SAI? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. B. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(6;0;0), (0;6;0), P(0;0;6). Hai mặt câu có phương trình (S1): x^2 + y^2 + z^2 – 2x – 2y + 1 = 0 và (S2): x^2 + y^2 + z^2 – 8x + 2y + 2z + 1 = 0 cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng MN, NP, PM? + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. Gọi S là tập các giá trị của tham số m để đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác OAB cân. Số tập con của tập S là?
Đề thi học sinh giỏi Toán 12 THPT năm 2018 2019 sở GDĐT Hà Nam
Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 12, đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam : + Trong mặt phẳng với hệ tọa độ Oxy, cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Có bao nhiêu điểm M thuộc trục Oy, có tung độ là số nguyên nhỏ hơn 2019 và thỏa mãn từ điểm M kẻ được 2 tiếp tuyến tới đồ thị (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía của trục Ox? [ads] + Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc các cạnh AB, AC sao cho mặt phẳng (DMN) luôn vuông góc với mặt phẳng (ABC). Đặt AM = x, AN = y. Tìm x, y để tam giác DMN có diện tích nhỏ nhất, lớn nhất. + Cho hàm số y = mx^3 – 3mx^2 + (2m + 1)x + 3 – m (1), với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho khoảng cách từ điểm I(1/2,15/4) đến đường thẳng AB đạt giá trị lớn nhất.