Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán về đường cố định và điểm cố định

Tài liệu gồm 71 trang, tuyển chọn một số bài toán về đường cố định và điểm cố định hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ Bài toán về đường cố định và điểm cố định là một bài toán khó, đòi hỏi học sinh phải có kĩ năng phân tích bài toán và suy nghĩ, tìm tòi một cách sâu sắc để tìm ra được lời giải. Một vấn đề quan trọng khi giải bài toán về đường cố định và điểm cố định dự đoán được yếu tố cố định. Thông thường ta dự đoán các yếu tố cố định bằng các phương pháp sau: + Giải bài toán trong trường hợp đặc biệt để thấy được yếu tố cố định cần tìm. Từ đó ta suy ra trường hợp tổng quát. + Xét các đường đặc biệt để của một họ đường để thấy được yếu tố cố định cần tìm. + Dựa vào tính đối xứng, tính độc lập, bình đẳng của các đối tượng để hạn chế phạm vi của hình tứ đó có thể tìm được yếu tố cố định. Khi giải bài toán về đường cố định và điểm cố định ta thường thực hiện các bước như sau: a) Tìm hiểu bài toán: Khi tìm hiểu bài toán ta xác định được: + Yếu tố cố định: điểm, đường …. + Yếu tố chuyển động: điểm, đường …. + Yếu tố không đổi: độ dài đoạn, độ lớn góc …. + Quan hệ không đổi: song song, vuông góc, thẳng hàng …. b) Dự đoán điểm cố định: Dựa vào những vị trí đặc biệt của yếu tố chuyển động để dự đoán yếu tố cố định. Thông thường ta tìm một hoặc hai vị trí đặc biệt cộng thêm với các đặc điểm bất biến khác như tính chất đối xứng, song song, thẳng hàng … để dự đoán điểm cố định. c) Tìm tòi hướng giải: Từ việc dự đoán yếu tố cố định tìm mối quan hệ giữa yếu tố đó với các yếu tố chuyển động, yếu tố cố định và yếu tố không đổi. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

101 bài toán Parabol và các vấn đề liên quan - Lương Tuấn Đức
Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc hai đơn giản (tức là dạng parabol có đỉnh là gốc tọa độ O) hay còn gọi là đồ thị hàm số y = ax^2, vấn đề vị trí tương đối giữa parabol và đường thẳng, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 10 THPT, sau nữa làm nền tảng cho tư duy hàm số, tư duy hình học giải tích ở cấp THPT mai sau, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] Nội dung tài liệu : + Sự biến thiên của hàm số bậc hai + Vẽ đồ thị hàm số bậc hai đơn giản (parabola đơn giản) + Biện luận vị trí tương đối giữa đường thẳng và parabola + Một số bài toán gắn kết yếu tố hình học + Bài toán nhiều cách giải
123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức
Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Chuyên đề bất đẳng thức
Tài liệu gồm 28 trang trình bày các phương pháp chứng minh bất đẳng thức và ứng dụng của bất đẳng thức
Tài liệu ôn thi tuyển sinh vào lớp 10 môn Toán - Trần Quốc Nghĩa
Tài liệu gồm 160 trang với nội dung gồm các phần: Phần 1. BÀI TẬP THEO CHUYÊN ĐỀ + Vấn đề 1. CĂN THỨC + Vấn đề 2. HÀM SỐ VÀ ĐỒ THỊ I. Hàm số bậc nhất II. Hàm số bậc hai III. Sự tương giao giữa parabol (P) và đường thẳng (d) + Vấn đề 3. PHƯƠNG TRÌNH I. Phương trình bậc nhất II. Phương trình bậc hai III. Phương trình trùng phương IV. Phương trình chứa căn thức và trị tuyệt đối V. Phương trình chứa tham số VI. Phương trình chứa ẩn ở mẫu. Phương trình bậc cao [ads] + Vấn đề 4. HỆ PHƯƠNG TRÌNH I. Giải hệ phương trình II. Hệ phương trình chứa tham số + Vấn đề 5. BẤT PHƯƠNG TRÌNH + Vấn đề 6. GIẢI TOÁN BẰNG CÁCH LẬP PT – HPT + Vấn đề 7. HÌNH HỌC I. Hệ thức lượng trong tam giác II. Đường tròn III. Hình trụ – Hình nón – Hình cầu + Vấn đề 8. BÀI TẬP TỔNG HỢP Phần 2. ĐỀ THI BÌNH DƯƠNG Phần 3. ĐỀ THI TPHCM Phần 4. ĐỀ THI CÁC TỈNH NĂM 2015 – 2016