Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 9 môn Toán đầu năm 2023 2024 phòng GD ĐT Kim Sơn Ninh Bình

Nội dung Đề kiểm tra lớp 9 môn Toán đầu năm 2023 2024 phòng GD ĐT Kim Sơn Ninh Bình Bản PDF - Nội dung bài viết Đề kiểm tra Toán lớp 9 đầu năm 2023 - 2024 phòng GD&ĐT Kim Sơn - Ninh Bình Đề kiểm tra Toán lớp 9 đầu năm 2023 - 2024 phòng GD&ĐT Kim Sơn - Ninh Bình Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề kiểm tra đánh giá chất lượng môn Toán lớp 9 đầu năm học 2023-2024 do phòng Giáo dục và Đào tạo huyện Kim Sơn, tỉnh Ninh Bình đã chuẩn bị. Đề thi bao gồm 12 câu trắc nghiệm (tổng cộng 03 điểm) và 03 câu tự luận (tổng cộng 07 điểm), thời gian làm bài là 60 phút. Để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới, đề thi sẽ đi kèm đáp án và hướng dẫn chấm điểm chi tiết. Trích dẫn một số câu hỏi trong đề thi như sau: - Giải bài toán bằng cách lập phương trình: Một người đi xe máy từ A đến B với vận tốc 40 km/h. Lúc về, người đó đi với vận tốc 30 km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Yêu cầu tính quãng đường AB. - Cho hình chữ nhật ABCD có AB = 4cm, AD = 3cm. Hãy vẽ đường cao AH của tam giác ADB và thực hiện các yêu cầu: + Tính diện tích hình chữ nhật ABCD, tính độ dài đường chéo BD + Chứng minh rằng tam giác AHB đồng dạng với tam giác BCD + Chứng minh rằng AD^2 = DH.DB và tính độ dài đoạn DH. - Giả sử hằng ngày bạn Tiến dành x giờ để tập chạy với vận tốc trung bình là 10km/h. Biểu thức nào sau đây biểu thị quãng đường Tiến chạy được trong x giờ? Chúc các em học sinh đạt kết quả tốt trong bài kiểm tra và tiếp tục phấn đấu học tập. Hãy ôn tập và giữ vững kiến thức để vượt qua mọi thử thách trước mắt. Cảm ơn các thầy cô đã hỗ trợ và động viên các em trong quá trình học tập!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 vòng 1 năm 2023 - 2024 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát các môn văn hóa và khoa học lớp 9 môn Toán vòng 1 năm học 2023 – 2024 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 01 tháng 10 năm 2023. Trích dẫn Đề khảo sát Toán 9 vòng 1 năm 2023 – 2024 trường THCS Giảng Võ – Hà Nội : + Cho n là số tự nhiên lớn hơn 1 thỏa mãn n2 + 4 và n2 + 11 đều là các số nguyên tố. Chứng minh rằng: n chia hết cho 5. + Cho tam giác ABC vuông tại A (AB < AC), H là chân đường vuông góc hạ từ A lên BC, M là trung điểm của AC, N là trung điểm của HC. Đường thẳng qua C song song với AB cắt MN tại P. 1) Chứng minh: Các tam giác ABM và CAP đồng dạng. 2) Gọi Q là chân đường vuông góc kẻ từ C lên AP. Chứng minh: HQN = 90°. 3) Đường thẳng HQ cắt MP tại I, gọi K là trung điểm của đoạn thẳng NI, G là trung điểm của đoạn thẳng HQ. Chứng minh: B, G, K thẳng hàng. + Các số nguyên dương 1; 2; …; 100 được chia thành 25 tập hợp (tập hợp nào cũng có ít nhất 1 phần tử). Chứng minh rằng tồn tại ba số nguyên dương thuộc cùng một trong những tập hợp đó sao cho ba số đó là độ dài ba cạnh của một tam giác.
Đề chọn HSG Toán 9 vòng 2 năm 2023 - 2024 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư Phạm Hà Nội, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 09 năm 2023.
Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương : + Cho đa thức A = 12×2 – 3y2 + 8xy + 2x + y biết rằng a, b là hai số nguyên dương thỏa mãn với x = a; y = b thì giá trị của đa thức A bằng 0. Chứng minh rằng: 6a + b + 1 là bình phương của một số nguyên. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE a) Chứng minh AB.CF = AC.AE. b) So sánh diện tích tứ giác AEMF và diện tích tam giác BMC. + Cho tam giác ABC, điểm D trên cạnh BC sao cho DC = 4.BD. Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF lớn nhất.
Đề chọn đội tuyển HSG Toán 9 vòng 2 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 21 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 2 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Tìm giá trị lớn nhất của biểu thức: P = 3a + ab + abc. + Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Đường thẳng qua F vuông góc với FO cắt đường thẳng BD tại S. Kẻ FH vuông góc với BD (H thuộc BD). 1. Chứng minh SFB đồng dạng SDF và SB.SD = SH.SO. 2. Chứng minh rằng FE là phân giác của BFD. Từ đó suy ra 1/BE² + 1/DE² = 2/EF². 3. Kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. + Xét tập T = {1; 2; 3; …; 10}. Chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x – y.