Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm 2014 2015 phòng GD ĐT Bình Giang Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Đề thi học sinh giỏi Toán lớp 8 năm 2014 - 2015 phòng GD&ĐT Bình Giang Hải Dương Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến quý vị đề thi học sinh giỏi môn Toán lớp 8 năm 2014 - 2015 từ phòng GD&ĐT Bình Giang - Hải Dương. Đề thi này bao gồm đáp án, lời giải và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức của mình. Trích dẫn một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD. Hãy chứng minh tứ giác BEDF là hình bình hành. Câu 2: Chứng minh rằng: CH.CD = CB.CK. Câu 3: Chứng minh rằng: AB.AH + AD.AK = AC2. Câu 4: Một người đi xe máy từ A đến B dự định mất 3 giờ 20 phút. Nếu người ấy tăng vận tốc thêm 5 km/h thì sẽ đến B sớm hơn 20 phút. Hãy tính khoảng cách AB. Câu 5: Cho biểu thức A. 1) Tìm ĐKXĐ rồi rút gọn biểu thức A. 2) Tính giá trị của biểu thức A biết |x - 7| = 4. Đây là những câu hỏi thú vị và đa dạng trong đề thi. Hy vọng các em sẽ thấy hứng thú và tìm hiểu để có thể giải quyết chúng một cách thành công. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THCS năm 2022 – 2023 phòng GD&ĐT thành phố Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2y2 = 4x2y – y3 – 4×2 + 3y2 − 1. + Cho số tự nhiên n ≥ 2 và số nguyên tố p thoả mãn p − 1 chia hết cho n đồng thời n3 − 1 chia hết cho p. Chứng minh rằng: n + p là một số chính phương. + Cho hình vuông ABCD cạnh a. Trên cạnh BC lấy điểm M (khác B và C), qua điểm A kẻ tia Ax vuông góc với AM cắt tia CD tại điểm F. 1) Chứng minh rằng: AM = AF. 2) Trên cạnh CD lấy điểm N sao cho MAN = 45°, gọi giao điểm của AM, AN với BD lần lượt tại Q và P; gọi I là giao điểm của MP và NQ. Chứng minh: AI vuông góc MN tại H. 3) Tìm giá trị nhỏ nhất của diện tích tam giác AMN khi M, N thay đổi.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Anh Sơn – Nghệ An : + Tìm n thuộc N để giá trị biểu thức sau là số nguyên tố C = n3 – n2 + n – 1. + Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P. Gọi M là điểm đối xứng với C qua P. Gọi E và F lần lượt là hình chiếu của M lên AB, AD. Chứng minh rằng: a) Tứ giác AEMF là hình chữ nhật b) Tứ giác ADBM là hình thang c) Ba điểm E, F, P thẳng hàng. + Cho hình thang ABCD (AB // CD). Gọi O là giao điểm hai đường chéo AC và BD. Từ A vẽ đường thẳng song song với BC cắt BD tại E. Từ B vẽ đường thẳng song song với AD cắt AC tại G. Chứng minh rằng: a) OE/OB = OG/OA. b) AB2 = EG.DC.
Đề HSG Toán 8 vòng 2 năm 2022 - 2023 trường THCS Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 8 vòng 2 năm học 2022 – 2023 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2022 – 2023 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho số thực x khác 0 thỏa mãn 2 x x và x3 đều là số hữu tỉ. Chứng minh rằng x là số hữu tỉ. + Cho S là tập hợp các số nguyên dương n có dạng 2 2 nx y 3 trong đó x, y là các số nguyên. Chứng minh rằng nếu A S và A là số chẵn thì A chia hết cho 4 và 4 A S. + Cho tam giác ABC vuông cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ NH vuông góc với CM tại H, HE vuông góc với AB tại E. Trên tia NH lấy điểm K sao cho NK = CM. a) Chứng minh tứ giác ABKC là hình vuông b) Chứng minh HM là tia phân giác của góc BHE c) Giả sử 0 AHC 135. Chứng minh 222 2HA HB HC.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Lúc 8 giờ, An rời nhà mình để đến nhà Bích với vận tốc 4km/h. Lúc 8 giờ 20 phút, Bích cũng rời nhà mình để đến nhà An với vận tốc 3 km/h. An gặp Bích trên đường, rồi cả hai cùng đi về nhà Bích. An ở nhà Bích chơi một thời gian rồi đi về một mình. Về đến nhà An tính ra quãng đường mình đã đi dài gấp bốn lần quãng đường Bích đã đi. Tính quãng đường từ nhà An đến nhà Bích (với giả thiết An và Bích cùng đi trên một quãng đường). + Cho hình vuông ABCD và điểm H thuộc cạnh BC (H không trùng với B và C). Trên nửa mặt phẳng bờ BC không chứa hình vuông ABCD dựng hình vuông CHIK. Gọi M là giao điểm DH và BK ; N là giao điểm KH và BD. 1. Chứng minh DH vuông góc với BK và DN DB DC DK. 2. Chứng minh BHD BHK DHK BH S S HC S và 6. BH DH KH HC HM HN 3. Gọi P là giao điểm của CN và DH. Qua P kẻ đường thẳng song song với BD cắt BC, BK lần lượt tại E, Q. Chứng minh E là trung điểm của PQ. + Tìm các cặp số nguyên (x;y) thỏa mãn x2 − 4xy + 5y2 – 16 = 0. Giả sử p, q là 2 số nguyên tố thỏa mãn đồng thời các điều kiện p q 3 p q 2. Chứng minh rằng 3 3 p q chia hết cho 36.