Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học lớp 9 môn Toán Nguyễn Chín Em (Tập 2)

Nội dung Tài liệu tự học lớp 9 môn Toán Nguyễn Chín Em (Tập 2) Bản PDF - Nội dung bài viết Tài liệu tự học Toán lớp 9 - Nguyễn Chín Em (Tập 2) Tài liệu tự học Toán lớp 9 - Nguyễn Chín Em (Tập 2) Tài liệu tự học Toán lớp 9 - Nguyễn Chín Em (Tập 2) là bộ sách gồm 285 trang được biên soạn bởi thầy Nguyễn Chín Em. Sách tập trung vào các chủ đề Toán lớp 9 giai đoạn học kỳ 2, bao gồm lý thuyết, dạng toán, phương pháp giải và bài tập. Phần I của sách tập trung vào chủ đề Đại số, chương 3 với các nội dung sau: Phương trình bậc nhất hai ẩn số Hệ hai phương trình bậc nhất hai ẩn Giải hệ phương trình bằng phương pháp thế và cộng Giải bài toán bằng cách lập hệ phương trình Phương trình quy về phương trình bậc hai Giải bài toán bằng cách lập phương trình Phần II của sách tập trung vào chủ đề Hình học, chương 3 với các nội dung sau: Góc với đường tròn Tứ giác nội tiếp Đường tròn ngoại tiếp và nội tiếp Diện tích hình tròn, hình quạt tròn Hình cầu, hình trụ, hình nón Tài liệu cung cấp cách giải các dạng toán khác nhau, từ giải phương trình đơn giản đến các bài toán phức tạp. Đồng thời, sách cũng giúp học sinh ôn tập lại kiến thức đã học để chuẩn bị tốt cho kỳ thi cuối kỳ.Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức Toán lớp 9 và rèn luyện kỹ năng giải các bài toán một cách linh hoạt và chính xác.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ số góc của đường thẳng y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Tìm hệ số góc của đường thẳng. Cách giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đường thẳng và hệ số góc của đường thẳng. – Hai đường thẳng song song có hệ số góc bằng nhau. – Đường thẳng y = ax + b (a > 0) tạo với tia Ox một góc α thì a = tan α. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Cách giải: Để xác định góc giữa đường thẳng (d) và tia Ox, ta làm như sau: Cách 1: Vẽ (d) trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2: Gọi α là góc tạo bởi tia Ox và (d). Ta có: – Nếu α < 90 thì a > 0 và a = tan α. – Nếu α > 90 thì a < 0 và a = -tan (180 – α). Dạng 3 : Lập phương trình đường thẳng biết hệ số góc. Cách giải: Gọi phương trình đường thẳng cần tìm là (d): y = ax + b. Nếu (d) đi qua A(x0;y0) và biết hệ số góc thì ta thay tọa độ A(x0;y0) vào (d), từ đó tìm được b và (d). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 24 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề nhắc lại và bổ sung các khái niệm về hàm số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hàm số. a) Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số. b) Hàm số có thể cho bằng bảng hoặc công thức. c) Khi y là hàm số của x, ta có thể viết: y f x y gx. d) Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. 2. Giá trị của hàm số, điều kiện xác định của hàm số. – Giá trị của hàm số f x tại điểm 0 x kí hiệu là: y fx 0 0. – Điều kiện xác định của hàm số f x là tất cả các giá trị của x sao cho biểu thức f x có nghĩa. 3. Đồ thị của hàm số. – Đồ thị của hàm số y fx là tập hợp tất cả các điểm M xy trong mặt phẳng tọa độ Oxy sao cho x y thỏa mãn hệ thức: y fx. – Điểm Mx y 0 0 thuộc đồ thị hàm số y fx 0 0 ⇔ y fx. 4. Hàm số đồng biến, hàm số nghịch biến. Cho hàm số: y fx xác định với x R. – Nếu giá trị của x tăng lên mà giá trị y fx tương ứng cũng tăng lên thì hàm số y fx được gọi là đồng biến trên R. – Nếu giá trị của biến x tăng lên mà giá trị của y fx tương ứng giảm đi thì hàm số gọi là nghịch biến trên R. B. Bài tập và các dạng toán. Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề vị trí tương đối giữa hai đường thẳng
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối giữa hai đường thẳng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Vị trí tương đối giữa hai đường thẳng. 2. Đường thẳng đi qua điểm cố định. 3. Ba đường thẳng đồng quy. B. Bài tập và các dạng toán. Dạng 1: Xét vị trí tương đối của hai đường thẳng. Dạng 2: Xác định phương trình đường thẳng. Cách giải: Để xác định phương trình đường thẳng ta thường làm như sau: Bước 1: Gọi (d): y = ax + b là phương trình đường thẳng cần tìm (a, b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a, b từ đó đi đến kết luận. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.
Tài liệu Toán 9 chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 43 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề một số hệ thức về cạnh và đường cao trong tam giác vuông trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. Khi giải các bài toán liên quan đến cạnh và đường cao trong tam giác vuông, ngoài việc nắm vững các kiến thức về định lý Talet, về các trường hợp đồng dạng của tam giác, cần phải nắm vững các kiến thức sau: Tam giác ABC vuông tại A, đường cao AH, ta có: 1) Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Định lí 1: Trong một tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền. 2) Hệ thức liên qua tới đường cao. Định lí 2: Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền. Định lí 3: Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích của cạnh huyền và đường cao tương ứng. Định lí 4: Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông. B. Bài tập và các dạng toán. Dạng 1 : Tính độ dài các đoạn thẳng trong tam giác vuông. Cách giải: Bước 1: Xác định vai trò của đoạn thẳng đã biết và đoạn thẳng cần tính trong tam giác vuông. Cụ thể, xác định xem đoạn thẳng đó là: + Là cạnh góc vuông. + Là đường cao. + Là cạnh huyền. + Là hình chiếu. Bước 2: Từ đó lựa chọn công thức tính phù hợp (trong 6 công thức ở phần lý thuyết). Dạng 2 : Tính chu vi, diện tích các hình. Cách giải: Bước 1: Hình cần tính chu vi, diện tích là hình gì? Bước 2: Viết công thức tính chu vi, diện tích của hình đó. Bước 3: Tính độ dài các đoạn thẳng chưa biết (đã học ở dạng 1). Bước 4: Thay số và tính chu vi, diệc tích. Kết luận. Dạng 3 : Chứng minh các hệ thức liên quan đến tam giác vuông. Cách giải: Sử dụng các hệ thức về cạnh và đường cao một cách hợp lý theo 3 bước: Bước 1: Chọn các tam giác vuông thích hợp chứa các đoạn thẳng có trong hệ thức. Bước 2: Tính các đoạn thẳng đó nhờ hệ thức về cạnh và đường cao. Bước 3: Liên kết các giá trị trên để rút ra hệ thức cần chứng minh. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.