Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm 2019 - 2020 trường Lương Thế Vinh - Hà Nội

Ngày … tháng 12 năm 2019, trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Lương Thế Vinh – Hà Nội mã đề 281 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút; đề hoàn thành tốt bài thi, học sinh cần ôn tập lại các kiến thức: mệnh đề và tập hợp, hàm số bậc nhất và bậc hai, phương trình và hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Lương Thế Vinh – Hà Nội : + Một học sinh giải phương trình như sau: Bước 1: Điều kiện xác định. Bước 2: Biến đổi tương đương. Bước 3: Vậy phương trình có nghiệm. Lời giải trên đúng hay sai, nếu sai thì sai bắt đầu từ bước nào? A. Lời giải đúng. B. Lời giải sai từ bước 1. C. Lời giải sai từ bước 2. D. Lời giải sai từ bước 3. [ads] + Trong hệ tọa độ Oxy cho ba điểm A(1;-4), B(4;5) và C(0;-9). Điểm M di chuyển trên trục Ox. Đặt Q = 2|MA + 2MB| + 3|MB + MC|. Biết giá trị nhỏ nhất của Q có dạng a√b trong đó a, b là các số nguyên dương và a, b < 20. Tính a – b. + Lớp 10D trường Lương Thế Vinh (Hà Nội) có 37 học sinh, trong đó có 17 học sinh thích môn Văn, 19 học sinh thích môn Toán, 9 em không thích môn nào. Số học sinh thích cả hai môn là? + Cho tam giác ABC nhọn có BC = 3a và bán kính đường tròn ngoại tiếp tam giác ABC là R = a√3. Tính số đo góc A. + Cho hệ phương trình mx + 2y = m + 1 và 2x + my = 2m – 1 với m là tham số thực. Tìm tất cả các giá trị của m để hệ phương trình đã cho vô nghiệm.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 10 năm học 2020 - 2021 sở GDĐT Vĩnh Phúc
Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Lê Quý Đôn - Hà Nội
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường THPT Quang Trung - Hà Nội
Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội được biên soạn theo hình thức đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 35 câu, chiếm 07 điểm, phần tự luận gồm 03 câu, chiếm 03 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường THPT Quang Trung – Hà Nội : + Cho Parabol (P): y = x2 – 4x + m – 1 và đường thẳng (d): y = -2mx + 3. a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (P) khi m = 4. b) Tìm tất cả các giá trị thực của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ âm. + Giải phương trình √(21 – x2 – 4x) = x + 3. + Trong mặt phẳng Oxy, cho tam giác ABC có A(2;1), B(1;1), C(-3;4). a) Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC. b) Tìm tọa độ điểm M thuộc trục hoành sao cho (MA + MB) đạt giá trị nhỏ nhất.
Đề thi học kỳ 1 Toán 10 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 12 năm 2020, trường THCS & THPT Nguyễn Tất Thành, trực thuộc trường Đại học Sư Phạm Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, đề gồm 02 trang, phần trắc nghiệm gồm 12 câu (03 điểm), phần tự luận gồm 04 câu (07 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(-1;1), C(5;-1). a. Tính BA.CB và độ dài trung tuyến AM của tam giác ABC. b. Tìm tọa độ tâm đường tròn ngoại tiếp của tam giác ABC. + Cho tam giác ABC có AB = 2√2, AC = 3 và BAC = 135 độ. Gọi M là trung điểm của BC, điểm N thỏa mãn AN = x.AC với x thuộc R. Tìm x biết AM vuông góc với BN. + Biết phương trình (3m + 2n – 8)x = m – 3n + 1 có vô số nghiệm. Giá trị của biểu thức m2 + n2 bằng?