Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trọn bộ phương pháp giải phương trình - Hệ phương trình - Nguyễn Anh Huy

Phương trình là một trong những phân môn quan trọng nhất của Đại số vì có những ứng dụng rất lớn trong các ngành khoa học. Sớm được biết đến từ thời xa xưa do nhu cầu tính toán của con người và ngày càng phát triển theo thời gian, đến nay, chỉ xét riêng trong Toán học, lĩnh vực phương trình đã có những cải tiến đáng kể, cả về hình thức (phương trình hữu tỉ, phương trình vô tỉ, phương trình mũ – logarit) và đối tượng (phương trình hàm, phương trình sai phân, phương trình đạo hàm riêng . . .) Còn ở Việt Nam, phương trình, từ năm lớp 8, đã là một dạng toán quen thuộc và được yêu thích bởi nhiều bạn học sinh. Lên đến bậc THPT, với sự hỗ trợ của các công cụ giải tích và hình học, những bài toán phương trình – hệ phương trình ngày càng được trau chuốt, trở thành nét đẹp của Toán học và một phần không thể thiếu trong các kì thi Học sinh giỏi, thi Đại học. Đã có rất nhiều bài viết về phương trình – hệ phương trình, nhưng chưa thể đề cập một cách toàn diện về những phương pháp giải và sáng tạo phương trình. Nhận thấy nhu cầu có một tài liệu đầy đủ về hình thức và nội dung cho cả hệ chuyên và không chuyên, Diễn đàn MathScope đã tiến hành biên soạn quyển sách Chuyên đề phương trình và hệ phương trình mà chúng tôi hân hạnh giới thiệu đến các thầy cô giáo và các bạn học sinh. Quyển sách này gồm 6 chương, với các nội dung như sau: [ads] + Chương I : Đại cương về phương hữu tỉ cung cấp một số cách giải tổng quát phương trình bậc ba và bốn, ngoài ra còn đề cập đến phương trình phân thức và những cách xây dựng phương trình hữu tỉ. + Chương II : Phương trình và hệ phương trình có tham số đề cập đến các phương pháp giải và biện luận bài toán có tham số ,cũng như một số bài toán thường gặp trong các kì thi Học sinh giỏi. + Chương III : Các phương pháp giải phương trình chủ yếu tổng hợp những phương pháp quen thuộc như bất đẳng thức, lượng liên hợp, hàm số đơn điệu . . . với nhiều bài toán mở rộng nhằm giúp bạn đọc có cách nhìn tổng quan về phương trình. Chương này không đề cập đến Phương trình lượng giác, vì vấn đề này đã có trong chuyên đề Lượng giác của Diễn đàn. + Chương IV : Phương trình mũ – logarit đưa ra một số dạng bài tập ứng dụng của hàm số logarit, với nhiều phương pháp biến đổi đa dạng như đặt ẩn phụ, dùng đẳng thức, hàm đơn điệu … + Chương V : Hệ phương trình là phần trọng tâm của chuyên đề. Nội dung của chương 7 bao gồm một số phương pháp giải hệ phương trình và tổng hợp các bài hệ phương trình hay trong những kì thi học sinh giỏi trong nước cũng như quốc tế. + Chương VI : Sáng tạo phương trình và hệ phương trình đưa ra những cách xây dựng một bài hay và khó từ những phương trình đơn giản bằng các công cụ mới như số phức, hàm hyperbolic, hàm đơn điệu . . . Ngoài ra còn có hai phần Phụ lục cung cấp thông tin ứng dụng phương trình và hệ phương trình trong giải toán và về lịch sử phát triển của phương trình. Chúng tôi xin ngỏ lời cảm ơn tới những thành viên của Diễn đàn đã chung tay xây dựng chuyên đề. Đặc biệt xin chân thành cảm ơn thầy Châu Ngọc Hùng, thầy Nguyễn Trường Sơn, anh Hoàng Minh Quân, anh Lê Phúc Lữ, anh Phan Đức Minh vì đã hỗ trợ và đóng góp những ý kiến quý giá cho chuyên đề, bạn Nguyễn Trường Thành vì đã giúp ban biên tập kiểm tra các bài viết để có một tuyển tập hoàn chỉnh. Niềm hi vọng duy nhất của những người làm chuyên đề là bạn đọc sẽ tìm thấy nhiều điều bổ ích và tình yêu toán học thông qua quyển sách này. Chúng tôi xin đón nhận và hoan nghênh mọi ý kiến xây dựng của bạn đọc để chuyên đề được hoàn thiện hơn. Mọi góp ý xin vui lòng chuyển đến [email protected]

Nguồn: toanmath.com

Đọc Sách

Một số phương pháp giải hệ phương trình - Nguyễn Văn Thiêm
Tài liệu gồm 55 trang hướng dẫn một số phương pháp giải hệ phương trình trong chương trình Đại số 10 chương 3 (phương trình và hệ phương trình), tài liệu được biên soạn bởi thầy Nguyễn Văn Thiêm, giáo viên trường THPT Yên Thành 2 – Nghệ An. PHẦN I . MỘT SỐ LOẠI HỆ PHƯƠNG TRÌNH THƯỜNG GẶP VẤN ĐỀ 1 . HỆ PHƯƠNG TRÌNH GIẢI BẰNG PHÉP THẾ Cách giải hệ phương trình bằng phép thế là đưa nhiều ràng buộc về ít ràng buộc, đưa hệ nhiều phương trình về hệ ít phương trình hay là đưa hệ phương trình về phương trình. Bởi vậy, đây là cách làm tự nhiên nhất, theo quan điểm đưa cái phức tạp về cái đơn giản. Dấu hiệu nhận dạng đối với hệ phương trình giải bằng phép thế là ít nhất một trong các phương trình có thể rút được một ẩn qua các ẩn còn lại; việc thế vào những những phương trình kia cho ta phương trình hay hệ phương trình có thể giải được. VẤN ĐỀ 2 . HỆ PHƯƠNG TRÌNH ĐỐI XỨNG KIỂU 1 Hệ phương trình hai ẩn đối xứng kiểu 1 là hệ phương trình hai ẩn mà khi ta hoán đổi vị trí hai ẩn, hệ không đổi. VẤN ĐỀ 3 . HỆ ĐỐI XỨNG KIỂU 2 Hệ phương trình đối xứng kiểu 2 là loại hệ phương trình mà khi ta hoán đổi vị trí các biến thì phương trình này thành phương trình kia và ngược lại. VẤN ĐỀ 4 . HỆ PHƯƠNG TRÌNH ĐẲNG CẤP HAI ẨN [ads] PHẦN II . MỘT SỐ PHƯƠNG PHÁP GIẢI HỆ PHƯƠNG TRÌNH VẤN ĐỀ 1 . PHƯƠNG PHÁP BIẾN ĐỔI ĐẠI SỐ 1. Biến đổi một phương trình: Dùng cách này khi thấy một phương trình có yếu tố thuận lợi để biến đổi, tính toán hoặc các phương trình trong hệ ít có mối liên hệ với nhau. + Biến đổi một phương trình thành tích hoặc thành phương trình đa thức sao cho có thể biểu diễn một ẩn theo các ẩn còn lại. + Thế vào các phương trình còn lại. 2. Phương pháp cộng đại số, phép thế: Chúng ta thực hiện cách này khi thấy các vế của các phương trình có mối liên hệ rõ ràng về hình thức, khiến cho việc thực hiện phép thế hay cộng đại số làm xuất hiện phương trình mới đơn giản hơn. + Giữ nguyên một phương trình của hệ. + Cộng hay trừ từng vế của hai phương trình, hay thế một phương trình vào phương trình còn lại … để được phương trình mới. + Giải hệ bao gồm phương trình được giữ lại và phương trình mới. VẤN ĐỀ 2 . PHƯƠNG PHÁP ĐẶT ẨN PHỤ 1. Bài toán dễ phát hiện ẩn phụ Đó là bài toán mà các đại lượng bên trong dễ “mã hoá” triệt để qua một hay một số ẩn số. Thông thường đó là tình huống đặt ẩn phụ để “bó” biểu thức rườm rà về một ẩn, đưa phân thức về đa thức, đưa căn thức về đa thức hay biểu thức chứa logarit, lượng giác về đa thức. 2. Bài toán đặt ẩn phụ sau một vài bước biến đổi Khi thấy các biểu thức trong hệ phương trình có mối liên hệ đặc biệt về hình thức, ta nghĩ đến việc đặt ẩn phụ. Tuy nhiên, mối liên hệ đó không phải lúc nào cũng rõ ràng, do đó cần có những bước biến đổi đẳng thức làm ẩn phụ xuất hiện. Cũng có những hệ phương trình khó giải, chúng ta buộc có những biến đổi làm thay đổi hình thức bài hình thức để tìm lời giải, có thể khi đó mới phát hiện ẩn phụ. VẤN ĐỀ 3 . PHƯƠNG PHÁP HÀM SỐ 1. Biến đổi một phương trình về dạng f(u) = f(v) + Biến đổi một phương trình về dạng f(u) = f(v). + Chứng minh f(t) là hàm số luôn đồng biến hoặc luôn nghịch biến trên miền xác định của của nó, từ đó đi đến kết luận u = v. + Thế u = v vào phương trình còn lại. 2. Dự đoán tập nghiệm, chứng minh không còn nghiệm khác nữa + Đưa hệ về phương trình một ẩn dạng f(x) = 0. + Chỉ ra phương trình f'(x) = 0 có k nghiệm, chứng tỏ f(x) = 0 có nhiều nhất k + 1 nghiệm. + Liệt kê k + 1 nghiệm của f(x) = 0 và khẳng định đó là tập nghiệm phương trình. Từ đó suy ra tập nghiệm của hệ .
Sử dụng liên hợp trực tiếp giải phương trình chứa căn (liên hợp 1) - Lương Tuấn Đức
Tài liệu gồm 246 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn phương pháp sử dụng liên hợp trực tiếp giải phương trình chứa căn. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng đại lượng liên hợp – trục căn thức – hệ phương trình tạm thời: Kiến thức chủ đạo là các ví dụ minh họa mở đầu, kỹ thuật liên hợp trực tiếp các biểu thức chứa căn và bài toán liên quan đến tìm nghiệm, liên hợp hằng số. Đây có thể được coi là một phương pháp mạnh, vì bản chất là phân tích nhân tử đưa phương trình chứa căn về một phương trình tích hệ quả. + Một số bài toán mở đầu. + Liên hợp trực tiếp các biểu thức chứa căn. + Bài toán nhiều cách giải. Phần 2 . Sử dụng đại lượng liên hợp – trục căn thức – hệ phương trình tạm thời đối với bài toán căn bậc hai: Nội dung chủ đạo là các ví dụ minh họa mở đầu cho các bài toán liên quan đến xác định nghiệm (trường hợp 1 nghiệm nguyên – nghiệm hữu tỷ), kỹ thuật liên hợp hằng số và xử lý, đánh giá phương trình hệ quả, tạm thời dừng chân với lớp bài toán chứa căn bậc hai. + Xác định nghiệm – liên hợp hằng số. + Đánh giá – xử lý hệ quả sau liên hợp. + Bài toán nhiều cách giải.
Sử dụng phân tích nhân tử giải hệ phương trình chứa căn - Lương Tuấn Đức
Tài liệu gồm 268 trang được biên soạn bởi thầy Lương Tuấn Đức trình bày một số phương pháp giải hệ phương trình chứa căn thức bằng phương pháp phân tích nhân tử, đây là dạng toán được bắt gặp nhiều trong chương trình Đại số 10 chương 3 và chương 4. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng phương pháp biến đổi tương đương giải hệ phương trình chứa căn thức: Mở màn cho lớp hệ phương trình chứa căn thức sử dụng phép thế, cộng đại số, phân tích hằng đẳng thức, phân tích nhân tử không chứa căn (không sử dụng liên hợp) và phối hợp các kỹ năng này. Tuy nhiên đây là hệ phương trình chứa căn thức nên đòi hỏi độc giả đã nắm vững các phương pháp giải hệ phương trình cơ bản, hệ phương trình hữu tỷ và các phương pháp giải phương trình chứa căn nói chung. + Sử dụng phép thế và phép cộng đại số. + Khai thác bài toán nghiệm cố định. + Sử dụng phân tích nhân tử cơ bản (dạng đa thức). + Sử dụng hằng đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. [ads] Phần 8 . Kết hợp sử dụng phép thế, cộng đại số và ẩn phụ (tiếp theo) giải hệ phương trình chứa căn thức: Tài liệu chủ yếu giới thiệu đến quý bạn đọc lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. + Phối hợp phép thế, cộng đại số và ẩn phụ. + Sử dụng tính chất đơn điệu hàm số. + Sử dụng kết hợp đánh giá – bất đẳng thức. + Tổng hợp các phép giải phương trình chứa căn. + Bài toán nhiều cách giải. Kiến thức chuẩn bị khi đọc tài liệu: 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức, phân thức, căn thức, giá trị tuyệt đối. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kỹ năng giải hệ phương trình cơ bản và hệ phương trình đối xứng, hệ phương trình đồng bậc, hệ phương trình chứa căn thông thường. 6. Kỹ thuật đặt ẩn phụ, sử dụng đại lượng liên hợp, biến đổi tương đương. 7. Kiến thức nền tảng về uớc lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị.
Sử dụng một ẩn phụ đơn giản giải phương trình chứa căn (ẩn phụ 1) - Lương Tuấn Đức
Tài liệu gồm 311 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn phương pháp sử dụng một ẩn phụ đơn giản giải phương trình chứa căn. Về cơ bản để làm việc với lớp phương trình, bất phương trình vô tỷ chúng ta ưu tiên khử hoặc giảm các căn thức phức tạp của bài toán, phép sử dụng ẩn phụ là một trong những phương pháp cơ bản nhằm mục đích đó, ngoài ra bài toán còn trở nên gọn gàng, sáng sủa và giúp chúng ta định hình hướng đi một cách ổn định nhất. Đôi khi đây cũng là phương pháp tối ưu cho nhiều bài toán cồng kềnh. Tổng quan về nội dung tài liệu: Phần 1 . Sử dụng một ẩn phụ đưa về phương trình hữu tỷ: Chủ đạo xoay quanh một lớp các bài toán chứa căn thức giải được bằng phép đặt ẩn phụ quy về phương trình bậc hai và phương trình phân thức hữu tỷ. Đây được coi là dạng toán cơ bản đặt nền tảng cho các bạn học sinh trong việc tư duy, thao tác các bài toán có sử dụng yếu tố ẩn phụ với mức độ phức tạp, đa chiều hơn trong các tài liệu tiếp theo. + Đặt một ẩn phụ cơ bản – phương trình bậc hai. + Đặt một ẩn phụ cơ bản – phương trình phân thức hữu tỷ. + Bài toán nhiều cách giải. [ads] Phần 4 . Sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp: Chủ yếu xoay quanh một lớp các bài toán chứa căn thức được giải thông ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. + Đặt hai ẩn phụ – phương trình đồng bậc bậc hai. + Đặt hai ẩn phụ – phân tích nhân tử. + Bài toán nhiều cách giải. Phần 9 . Sử dụng hai hay nhiều ẩn phụ quy về hệ phương trình (phần thứ 2): Phần 9 mang tính kế thừa và phát huy với phương châm chủ đạo là dùng hai ẩn phụ đưa phương trình cho trước về hệ phương trình, bao gồm hệ cơ bản, hệ đối xứng và gần đối xứng (tiếp theo), xoay quanh các bài toán với căn bậc ba. Đây vẫn là một trong những phương án hữu tỷ hóa phương trình chứa căn, giảm thiểu đại bộ phận sự cồng kềnh và sai sót trong tính toán. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. + Đặt ẩn phụ quy về hệ đối xứng – gần đối xứng (tiếp theo). + Bài toán nhiều cách giải. Tài liệu phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT Chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác.