Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Yên Phong 2 Bắc Ninh

Nội dung Đề HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Yên Phong 2 Bắc Ninh Bản PDF - Nội dung bài viết Đề HSG cấp trường lớp 10 môn Toán năm 2020 - 2021 trường Yên Phong 2 Bắc Ninh Đề HSG cấp trường lớp 10 môn Toán năm 2020 - 2021 trường Yên Phong 2 Bắc Ninh Vào ngày thứ Tư, 10 tháng 03 năm 2021, trường THPT Yên Phong số 2 tại tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán cho học sinh lớp 10 năm học 2020 - 2021. Đề thi này bao gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài là 150 phút. Đề thi có cung cấp lời giải chi tiết và hướng dẫn chấm điểm cho các bài toán. Một số câu hỏi trong đề HSG cấp trường Toán lớp 10 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh: Cho hàm số bậc hai với tham số m. a) Vẽ đồ thị của hàm số khi m = 2. b) Tìm điểm cố định mà đồ thị luôn đi qua với mọi giá trị của m. c) Xác định các giá trị của m để đồ thị cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. a) Tìm tọa độ điểm D sao cho DA DB DC. b) Viết phương trình đường thẳng qua D và tạo góc 45° với đường thẳng AB. c) Tính bán kính đường tròn ngoại tiếp tam giác ABC. Cho ba số thực thỏa mãn x + y + z = 4. Tìm giá trị lớn nhất của biểu thức \(xy + yz + zx\). Đề thi này giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và phân tích. Đồng thời, cũng là cơ hội để học sinh thể hiện khả năng và kiến thức của mình trong môn Toán. Hy vọng mọi thí sinh đã có những bước chuẩn bị tốt và đạt kết quả cao trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic 243 Toán 10 năm 2021 sở GDĐT Quảng Nam
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.
Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.