Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội : + Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng: a) Tứ giác OBME nội tiếp. b) 2 2 CD CE CO R. c) M luôn di chuyển trên một đường tròn cố định. + Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương. + Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Bình Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Bình Giang, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Bình Giang – Hải Dương : + Hai tỉnh A và B cách nhau 260(km). Một ô tô dự định đi từ A đến B với thời gian đã định. Sau khi đi được 80(km) với vận tốc dự định, người lái xe tăng vận tốc thêm 10(km/h), do đó ô tô đã đến B sớm hơn dự định 54 phút. Tính vận tốc dự định của ô tô. + Điểm hạ cánh của một máy bay trực thăng ở giữa hai người quan sát A và B. Biết máy bay cách mặt đất là 125(m), góc nhìn thấy máy bay tạo với mặt đất tại vị trí A là 0 40 và tại vị trí B là 0 30. Hãy tìm khoảng cách giữa hai người quan sát A và B (kết quả làm tròn đến hàng đơn vị). + Cho tam giác ABC có ba góc nhọn, AB < AC nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt đường tròn (O) ở K (K ≠ A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I (I ≠ A), MD cắt BI tại N. a) Chứng minh: Tứ giác ACDF nội tiếp và tam giác CMD cân. b) Chứng minh: 2 MD MI MA và ba điểm C, N, K thẳng hàng.
Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Từ ngày 01/07/2024, sau khi cải cách tiền lương cho cán bộ viên chức. Thầy Huy được tăng 25% lương, vợ thầy Huy làm viên chức ở lĩnh vực khác được tăng 20% lương. Do đó cả hai vợ chồng thầy Huy được tăng thêm 5 triệu đồng. Tính tiền lương thầy Huy và vợ sau ngày 01/07/2024, biết rằng tổng tiền lương hiện tại của vợ chồng thầy Huy là 22 triệu đồng. + Một con Quạ thông minh đã bỏ 3 hòn sỏi vào một bình thủy tinh hình trụ có đường kính 6cm chứa nước để nước dâng lên. Tính thể tích 3 hòn sỏi mà Quạ đã bỏ vào, biết mực nước dâng lên 2cm và không tràn ra ngoài. + Cho (O; R) và đường thẳng d không có điểm chung với (O). Điểm M thay đổi trên d. Từ M kẻ hai tiếp tuyến MA, MB đến (O,R) (A,B là hai tiếp điểm). Đoạn thẳng OM lần lượt cắt đường thẳng AB và (O, R) tại điểm H, K. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh OH. KM = OK.KH c) Xác định vị trí của điểm M trên d sao cho bán kính đường tròn nội tiếp tam giác MAB có giá trị nhỏ nhất.
Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Quốc Oai – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội xe vận tải nhận kế hoạch chở 360 tấn hàng, được chia đều cho các xe. Lúc khởi hành có 3 xe bị hỏng nên mỗi xe phải chở tăng thêm 4 tấn so với dự định. Hỏi ban đầu có bao nhiêu xe? + Một chiếc đồng hồ cát được tạo bởi hai hình nón bằng nhau, có mặt cắt và kích thước như hình vẽ. Người ta đổ đầy cát vào một nửa rồi úp ngược cho cát chảy. Biết rằng lượng cát chảy mỗi phút là 15cm3. Hỏi sau bao lâu cát chảy hết. (Lấy π ≈ 3,14và làm tròn đến đơn vị phút). + Cho tứ giác ABCD nội tiếp (O), đường kính AD (điểm B thuộc cung nhỏ AC). Gọi H là giao điểm của AC và BD; Kẻ HK vuông góc với AD tại K. a/ Chứng minh tứ giác ABHK nội tiếp và AH.AC = AK.AD. b/ Chứng minh BD là tia phân giác của góc CBK. c/ Tia BK cắt (O) tại F. Gọi P và Q lần lượt là hình chiếu của F trên các đường thẳng BA và BD. Chứng minh PQ // BC và ba đường thẳng AD, CF, PQ đồng quy.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Lục Ngạn - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Lục Ngạn – Bắc Giang : + Một người đo chiều cao của một ngôi nhà cao tầng bằng cách đứng ở vị trí cách tòa nhà một khoảng 50(m) (theo phương vuông góc với chiều cao của tòa nhà) và nhìn đỉnh của tòa nhà dưới một góc 60 (so với phương nằm ngang). Biết khoảng cách từ mặt đất đến mắt của người đó bằng 1,6m. Chiều cao của ngôi nhà trên là bao nhiêu mét? (Làm tròn đến chữ số thập phân thứ hai). + Lúc 7 giờ, một người đi xe máy xuất phát từ A để đến B. Đến 9 giờ, người thứ hai xuất phát từ B để đi về A bằng ô tô và gặp người đi xe máy sau 1 giờ di chuyển. Biết rằng nếu cả hai người cùng giảm vận tốc đi 5 km/h thì khi đó vận tốc của người đi ô tô gấp rưỡi vận tốc của người đi xe máy. Tính vận tốc của mỗi người biết hai địa điểm A và B cách nhau 200 km. + Cho tam giác ABC nhọn có AB AC đường cao AH (H BC) nội tiếp đường tròn (O). Gọi M N lần lượt là hình chiếu của H trên AB AC. 1) Chứng minh tứ giác AMHN là tứ giác nội tiếp. 2) Gọi P là giao điểm của đường thẳng MN và BC. Chứng minh PM PN PB PC. 3) Gọi D là giao điểm của MN và AH I là tâm đường tròn ngoại tiếp tam giác BMD. Đường cao AH cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh OI BE.