Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Bình Định

Tài liệu gồm 32 trang, được tổng hợp bởi các tác giả: Đào Xuân Luyện, Huỳnh Duy Thủy, Nguyễn Công Nhã, Nguyễn Duy Chiến, Trần Văn Chớ, Cao Hoàng Hạ, Trần Đức An, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Bình Định trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2000 – 2001 sở GD&ĐT Bình Định. 2. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2001 – 2002 sở GD&ĐT Bình Định. 3. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2002 – 2003 sở GD&ĐT Bình Định. 4. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2003 – 2004 sở GD&ĐT Bình Định. 5. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2004 – 2005 sở GD&ĐT Bình Định. 6. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2005 – 2006 sở GD&ĐT Bình Định. 7. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2006 – 2007 sở GD&ĐT Bình Định. 8. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2007 – 2008 sở GD&ĐT Bình Định. 9. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2008 – 2009 sở GD&ĐT Bình Định. [ads] 10. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2009 – 2010 sở GD&ĐT Bình Định. 11. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2010 – 2011 sở GD&ĐT Bình Định. 12. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2011 – 2012 sở GD&ĐT Bình Định. 13. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2012 – 2013 sở GD&ĐT Bình Định. 14. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2013 – 2014 sở GD&ĐT Bình Định. 15. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2014 – 2015 sở GD&ĐT Bình Định. 16. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2015 – 2016 sở GD&ĐT Bình Định. 17. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2016 – 2017 sở GD&ĐT Bình Định. 18. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2017 – 2018 sở GD&ĐT Bình Định. 19. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2018 – 2019 sở GD&ĐT Bình Định. 20. Đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 sở GD&ĐT Bình Định.

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Quận 7 TP HCM
Nội dung Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Quận 7 TP HCM Bản PDF Đề tham khảo tuyển sinh lớp 10 môn Toán năm 2024 – 2025 của phòng Giáo dục và Đào tạo Quận 7, thành phố Hồ Chí Minh đã được Sytu giới thiệu đến quý thầy cô và các em học sinh lớp 9. Đề thi bao gồm các câu hỏi thú vị và bổ ích, kèm theo đáp án và lời giải chi tiết.Trong đề thi, có một câu hỏi liên quan đến khuyến mãi của một cửa hàng trà sữa. Học sinh sẽ phải tính toán số tiền cần trả khi mua 30 ly trà sữa với chương trình giảm giá hấp dẫn. Câu hỏi khác đề cập đến việc tính chiều cao của một cái tháp dựng bên bờ sông, thú vị và đòi hỏi sự sáng tạo trong việc giải quyết vấn đề.Ngoài ra, đề thi còn đưa ra một bài toán về hàm số bậc nhất để học sinh áp dụng kiến thức toán học vào thực tiễn. Học sinh sẽ phải tìm ra mối liên hệ giữa cước điện thoại và thời gian gọi của người dùng để xác định các hệ số a, b trong hàm số.Tất cả những câu hỏi trong đề thi đều được thiết kế để kiểm tra và đánh giá khả năng giải quyết vấn đề và tư duy logic của học sinh. Đây là cơ hội tuyệt vời để các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh vào lớp 10, đồng thời nâng cao kiến thức và kỹ năng toán học của mình.
Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Bình Dương
Nội dung Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán năm 2023-2024 sở GDĐT Bình Dương Đề thi tuyển sinh chuyên môn Toán năm 2023-2024 sở GDĐT Bình Dương Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023-2024 của sở Giáo dục và Đào tạo tỉnh Bình Dương. Đề thi bao gồm các câu hỏi như sau: Cho phương trình \(2x^2 - mx + m^2 - 12 = 0\) (trong đó \(m\) là tham số). a) Chứng minh rằng phương trình luôn có 2 nghiệm \(x_1, x_2\) với mọi giá trị của \(m\). b) Tìm giá trị của \(m\) để biểu thức \(2023x^2 + 1\) đạt giá trị nhỏ nhất. Cho phương trình \(2ax^2 + bx + c = 0\) với \(a, b, c\) là các số thực khác 0 và thỏa mãn \(ac > bc > ab > 3\). Chứng minh rằng phương trình đã cho luôn có nghiệm. Cho tam giác nhọn \(ABC\) (\(AB > AC\)) nội tiếp đường tròn \((O)\). Gọi \(D, E\) lần lượt là chân các đường cao hạ từ đỉnh \(A, B\). Gọi \(F\) là hình chiếu vuông góc của \(B\) lên đường thẳng \(AO\). a) Chứng minh rằng 4 điểm \(B, E, D, F\) là 4 đỉnh của một hình thang cân. b) Chứng minh rằng \(EF\) đi qua trung điểm của \(BC\). c) Gọi \(P\) là giao điểm thứ hai của đường thẳng \(AO\) với đường tròn \((O)\). Gọi \(M, N\) lần lượt là trung điểm của \(EF\) và \(CP\). Tính số đo góc \(BMN\). Đề thi tuyển sinh này không chỉ giúp học sinh ôn tập và trau dồi kiến thức mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Chúc các em học sinh thành công trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bắc Kạn
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Bắc Kạn Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Bắc Kạn Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Bắc Kạn Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2023-2024 sở Giáo dục và Đào tạo UBND tỉnh Bắc Kạn. Đề thi bao gồm các câu hỏi thú vị, phong phú và yêu cầu sự tư duy logic, khả năng giải quyết vấn đề của các em. Trích dẫn một số câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Bắc Kạn: Cho phương trình \(2x^2 - mx + 6 = 0\) (m là tham số). Tìm các giá trị nguyên của m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện \(x^2 + 2x < 5\). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện \(x^2 + 12x + 8 > 0\). Tìm tất cả các cặp số nguyên (x, y) thỏa mãn \(2x^2 - xy + 3x - 3y = 30\). Cho tam giác ABC vuông tại A, AB = AC. Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. Chứng minh tứ giác IECD là tứ giác nội tiếp. Chứng minh ba điểm K, O, S thẳng hàng. Chứng minh HNM cùng phân giác EMN. Những câu hỏi trên không chỉ giúp các em ôn tập kiến thức mà còn thách thức khả năng tư duy logic và khả năng giải quyết vấn đề của các em. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới. Chúc các em học tốt và thành công!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Bắc Kạn
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Bắc Kạn Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Bắc Kạn Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Bắc Kạn Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 của sở Giáo dục và Đào tạo UBND tỉnh Bắc Kạn. Đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Bắc Kạn: 1. Bạn Nam đi học từ nhà đến trường bằng xe đạp. Lúc về, Nam đi với vận tốc nhanh hơn so với lúc đi 3 km/h. Vì vậy, thời gian lúc về ít hơn thời gian lúc đi 15 phút. Hãy tính vận tốc lúc đi của bạn Nam, biết rằng quãng đường từ nhà Nam đến trường là 15 km. 2. Tìm các giá trị của m để đường thẳng 2y = mx + 2 cắt parabol y = x^2 tại 2 điểm phân biệt có hoành độ đều bằng 1/2. 3. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, bán kính R và đường cao AH (H thuộc BC). Kẻ HI, HK lần lượt vuông góc với AB, AC (I thuộc AB, K thuộc AC). Chứng minh: a) Tứ giác AIHK nội tiếp. b) AK.AC = AI.AB. c) OA vuông góc với IK. d) AB.AC = 2R.AH. File WORD (dành cho quý thầy, cô): [link tải file] Hãy chuẩn bị kỹ càng và tự tin để vượt qua kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm 2023-2024. Chúc các em học sinh thành công!