Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2020 lần 1 môn Toán sở GDĐT Ninh Bình

Ngày … tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi thử tốt nghiệp THPT Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ nhất. Đề thi thử THPT Quốc gia 2020 lần 1 môn Toán sở GD&ĐT Ninh Bình mã đề 001 được biên soạn bám sát đề minh họa THPT QG môn Toán do Bộ Giáo dục và Đào tạo công bố; đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử THPT Quốc gia 2020 lần 1 môn Toán sở GD&ĐT Ninh Bình : + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón đôi một tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4/3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và tổng lượng nước trào ra là 337π/24 (lít). Thể tích nước ban đầu ở trong bể thuộc khoảng nào dưới đây (đơn vị tính: lít)? [ads] + Cho hai khối nón có chung trục SS’ = 3r. Khối nón thứ nhất có đỉnh S, đáy là hình tròn tâm S’ bán kính 2r. Khối nón thứ hai có đỉnh S’, đáy là hình tròn tâm S bán kính r. Thể tích phần chung của hai khối nón đã cho bằng? + Chọn khẳng định sai: A. Hàm số y = lnx không có cực trị trên (0;+∞). B. Hàm số y = lnx có đồ thị nhận trục tung làm đường tiệm cận đứng. C. Hàm số y = lnx luôn đồng biến trên (0;+∞). D. Hàm số y = lnx có giá trị nhỏ nhất trên (0;+∞) bằng 0.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Cổ Loa - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT Cổ Loa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Cổ Loa – Hà Nội : + Trong không gian Oxyz cho hai điểm A(2;3;3) và B(-2;-1;1). Gọi (1S) và (2S) lần lượt là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại A và B đồng thời tiếp xúc ngoài với nhau tại điểm M. Khi đó khoảng cách từ điểm M đến mặt phẳng P x y z 2 2 8 0 đạt giá trị lớn nhất bằng bao nhiêu? + Cho hàm số 3 2 f x x bx cx d b c d có đồ thị C. Gọi g x là hàm số bậc nhất có đồ thị là đường thẳng cắt đồ thị C tại ba điểm A B C sao cho BA BC 2. Gọi 1 2 S S lần lượt là diện tích các hình phẳng được tô đậm trong hình vẽ. Biết 1 8 3 S tính 2 S. + Một công ty cần tuyển 3 nhân viên mới. Có 4 nam và 3 nữ nộp đơn dự tuyển. Giả sử khả năng trúng tuyển của mỗi người là như nhau. Xác suất để trong 3 người được tuyển có 1 nam và 2 nữ bằng?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bắc Giang (mã đề 111); kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở GD&ĐT Bắc Giang : + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 25 và hình nón (n) có đỉnh A(3;2;-2) và nhận AI làm trục đối xứng với I là tâm mặt cầu. Một đường sinh của hình nón (n) cắt mặt cầu tại M, N sao cho AM = 3AN. Mặt cầu đồng tâm với mặt cầu (S) và tiếp xúc với các đường sinh của hình nón (n) có bán kính bằng? + Trong không gian với hệ toạ độ Oxyz, cho điểm M(a;b;c) với a, b, c là ba số thực dương thoả mãn điều kiện 5(a2 + b2 + c2) = 6(ab + bc + ca) và biểu thức P đạt giá trị lớn nhất. Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy và Oz. Phương trình mặt phẳng (ABC) là? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x + 1)2 + (y + 4)2 + (z – 3)2 = 6 và điểm M(1;-2;4). Xét điểm N thuộc mặt cầu (S) sao cho đường thẳng MN tiếp xúc với mặt cầu (S). Khi đó điểm N luôn nằm trên mặt phẳng có phương trình?
Đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 trường THPT Thị xã Quảng Trị; đề thi có đáp án mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT Thị xã Quảng Trị : + Cho hai hàm số y f x và y g x biết rằng hàm số 3 2 f x ax bx cx d và 2 g x qx nx p với a q 0 có đồ thị như hình vẽ và diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f x và g x bằng 10 và f g 3 3 45 0. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y f x và y g x bằng a b (với a b là phân số tối giản). Tính P a b. + Cho một hình nón đỉnh S có đáy là đường tròn O, bán kính R 5 và góc ở đỉnh bằng 2 với 2 sin 3. Mặt phẳng P vuông góc với SO tại H và cắt hình nón theo đường tròn tâm H. Gọi V là thể tích khối nón đỉnh O và đáy là đường tròn tâm H. Biết V đạt giá trị lớn nhất khi b SH a với a b N và b a là phân số tối giản. Tính giá trị của biểu thức 2 2 T a b 2. + Tại môn bóng đá nam SEA Games 31 tổ chức tại Việt Nam có 10 đội bóng tham dự trong đó có 2 đội tuyển Việt Nam và Thái Lan. Ban tổ chức chia ngẫu nhiên 10 đội tuyển thành 2 bảng: bảng A và bảng B, mỗi bảng có 5 đội. Xác suất để đội tuyển Việt Nam và đội tuyển Thái Lan nằm cùng một bảng đấu là?
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt phẳng (R): x + y – 2z + 2 = 0 và đường thẳng Delta1. Đường thẳng Delta2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Delta1 có phương trình là? + Cho hình nón có chiều cao bằng 3a biết rằng khi cắt hình nón đã cho bởi một mặt phẳng đi qua đỉnh hình nón và cách tâm của đáy hình nón một khoảng bằng a, thiết diện thu được là một tam giác vuông. Tính thể tích của khối nón được giới hạn bởi hình nón đã cho? + Cho a là số thực, phương trình z2 + (a – 2)z + 2a – 3 = 0 có hai nghiệm z1 và z2. Gọi M và N là điểm biểu diễn của z1 và z2 trên mặt phẳng tọa độ. Biết tam giác OMN có một góc bằng 120°, tính tổng các giá trị của a?