Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bắc Giang

Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Giang gồm có 02 trang với 20 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Tính số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. [ads] + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Đoạn thẳng OM cắt đường tròn (O;R) tại điểm E. Chứng minh rằng khi CMD = 60 độ thì E là trọng tâm của tam giác MCD. c) Gọi N là điểm đối xứng của M qua O. Đường thẳng đi qua O vuông góc với MN cắt các tia MC, MD lần lượt tại các điểm P và Q. Khi M di động trên tia đối của tia BA, tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bình Lục Hà Nam
Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Bình Lục Hà Nam Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 phòng GD ĐT Bình Lục Hà Nam Đề thi thử Toán vào năm 2022-2023 phòng GD ĐT Bình Lục Hà Nam Chào mừng đến với Đề thi thử Toán môn Toán tuyển sinh vào lớp 10 THPT năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam. Dưới đây là một số câu hỏi thú vị và phức tạp trong đề thi: 1. Cho Parabol (P): y = x^2 và đường thẳng (d): y = (2m + 1)x - 2m với m là tham số. Trong các điểm M, N, điểm nào thuộc (P)? Tìm m để (P) cắt (d) tại hai điểm phân biệt A(x1;y1), B(x2;y2). 2. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), (AB < AC). Ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh tứ giác BFEC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BFEC. Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KF.KE = KB.KC. Đường thẳng AK cắt đường tròn (O) tại M (M khác A). Chứng minh MAF = MEF. Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. 3. Cho a, b, c là các số dương. Chứng minh abc
Đề thi thử Toán vào năm 2022 2023 trường THCS Vĩnh Quang Thanh Hóa
Nội dung Đề thi thử Toán vào năm 2022 2023 trường THCS Vĩnh Quang Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 trường THCS Vĩnh Quang Thanh Hóa Đề thi thử Toán vào năm 2022-2023 trường THCS Vĩnh Quang Thanh Hóa Chào quý thầy cô và các em học sinh lớp 9! Để giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2022-2023 trường THCS Vĩnh Quang, chúng tôi xin giới thiệu đề thi thử môn Toán. Kỳ thi sẽ diễn ra vào ngày 27 tháng 05 năm 2022. Dưới đây là một số câu hỏi trích từ đề thi thử Toán vào lớp 10 năm học 2022-2023 trường THCS Vĩnh Quang - Thanh Hóa: 1. Cho hàm số y = mx + n (với m khác 0). Tìm m và n sao cho đồ thị hàm số đó (đường thẳng) song song với đường thẳng y = -x + 2021 và đi qua điểm A(1;2022). 2. Giải phương trình x2 + 5x + m - 2 = 0 (với m là tham số) để có hai nghiệm phân biệt x1 và x2. 3. Trong đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại điểm H. Với điểm C nằm ngoài đường tròn sao cho AC cắt đường tròn tại K (khác A) và dây MN cắt dây BK tại E. Chứng minh tứ giác AHEK nội tiếp và tam giác NFK cân. Mong rằng đề thi thử này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An
Nội dung Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Đề thi thử Toán vào 10 lần 2 năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 do phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An tổ chức. Trích đề thi thử Toán vào 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An: Cho phương trình: x2 – 2x + m – 1 = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = -7 b) Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn hệ thức 2x1 + 2x2 + x12x22 = 8. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để tham gia kỷ niệm ngày sinh của Bác 19/05, trường THCS A dự định lấy 120 học sinh gồm nam và nữ tham gia diễu hành. Nhưng sau đó ban tổ chức đã cắt giảm 20% số học sinh nam và 10% số học sinh nữ, do vậy tổng số học sinh tham gia diễu hành ít hơn dự kiến ban đầu là 17 em. Tính số học sinh nam và nữ dự định lấy để tham gia diễu hành. Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CA lấy điểm E. Qua điểm C vẽ đường thẳng vuông góc với BE tại F. a) Chứng minh tứ giác BOCF là tứ giác nội tiếp. b) Gọi H là giao điểm của OF và BC. Chứng minh CH.FC = BH.FE. c) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O) tại G. Chứng minh D, H, G thẳng hàng.
Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Quỳ Hợp Nghệ An
Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Quỳ Hợp Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022-2023 phòng GD ĐT Quỳ Hợp Nghệ An Đề thi thử Toán vào lần 2 năm 2022-2023 phòng GD ĐT Quỳ Hợp Nghệ An Chào các thầy cô giáo và các em học sinh lớp 9, Sytu xin giới thiệu đến bạn đề thi thử môn Toán ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Quỳ Hợp, tỉnh Nghệ An. Dưới đây là một số câu hỏi trong đề thi: Cho phương trình bậc hai ẩn x: x2 + 2mx + m2 - 1 = 0 (1) (với m là tham số). Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn. Trong ngày hội đọc sách vừa diễn ra, Thư viện tỉnh đã tặng cho trường THCS A 50 cuốn sách về kỹ năng sống và truyện về Bác Hồ kính yêu. Mỗi cuốn sách kỹ năng sống có giá 120 nghìn đồng và mỗi cuốn truyện về Bác Hồ kính yêu có giá 70 nghìn đồng. Hỏi Thư viện tỉnh đã tặng cho trường THCS A bao nhiêu cuốn sách về kỹ năng sống và bao nhiêu cuốn truyện về Bác Hồ kính yêu? Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính R. Các đường cao BD, CE của tam giác ABC cắt nhau tại H. Đường thẳng chứa tia phân giác của góc BHE cắt AB, AC lần lượt tại F, G. Hãy chứng minh và giải thích các bước của yêu cầu sau: a. Tứ giác BCDE và AEHD nội tiếp đường tròn. b. BH.BD + CH.CE = BC2. c. Đường thẳng HQ luôn đi qua một điểm cố định khi A thay đổi trên cung lớn BC của đường tròn (O). Hy vọng các em học sinh sẽ rèn luyện và ôn tập để đạt kết quả cao trong kỳ thi sắp tới. Chúc các em thành công!