Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi cuối học kì 2 Toán 9 năm 2020 - 2021 trường THCS Lương Phi - An Giang

Thứ Hai ngày 26 tháng 04 năm 2021, trường THCS Lương Phi, huyện Tri Tôn, tỉnh An Giang tổ chức kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kì 2 năm học 2020 – 2021. Đề thi cuối học kì 2 Toán 9 năm 2020 – 2021 trường THCS Lương Phi – An Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi cuối học kì 2 Toán 9 năm 2020 – 2021 trường THCS Lương Phi – An Giang : + Cho hàm số y = x^2 có đồ thị là Parabol (P). a) Vẽ Parabol (P) trên mặt phẳng tọa độ Oxy. b) Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d): y = x + 2 bằng phép tính. + Cho phương trình ẩn x, tham số m: x2 – (m + 1)x + m = 0. a) Chứng minh rằng phương trình đã cho luôn có nghiệm với mọi giá trị của m. b) Tìm m để phương trình đã cho có hai nghiệm sao cho x1^2 – 2×2^2 = -1. + Một tờ giấy hình chữ nhật ABCD có kích thước 3dm x 4dm. Gấp tờ giấy theo đường chéo AC như hình vẽ. Tính diện tích hình tô đậm sau khi gấp (kết quả làm tròn đến chữ số thập phân thứ hai).

Nguồn: toanmath.com

Đọc Sách

Đề học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 14 tháng 04 năm 2023. Trích dẫn Đề học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một đội xe theo kế hoạch phải chuyển xong 200 tấn than trong một thời gian quy định, mỗi ngày chuyển được một khối lượng than như nhau. Nhờ bổ sung thêm xe, thực tế mỗi ngày đội chuyển thêm được 5 tấn so với kế hoạch. Vì vậy chẳng những đã hoàn thành công việc sớm hơn 1 ngày so với quy định mà còn chuyển vượt mức kế hoạch 25 tấn. Tính khối lượng than mà đội xe phải chuyển trong một ngày theo kế hoạch. + Một hộp sữa hình trụ có bán kính đáy là 3,5 cm và chiều cao là 8 cm. Người ta dùng giấy làm bao bì xung quanh hộp sữa (trừ hai đáy). Tính diện tích giấy để làm bao bì (lấy π ≈ 3,14). + Cho đường tròn (O) có hai đường kính AB, MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C. Kẻ MH vuông góc với BC (H thuộc BC). 1) Chứng minh tứ giác BOMH nội tiếp được đường tròn. 2) Gọi E là giao điểm của MB và OH. Chứng minh HO là tia phân giác của góc MHB và ME MH BE HC. 3) Gọi giao điểm của đường tròn (O) với đường tròn ngoại tiếp tam giác MHC là K. Chứng minh ba điểm CKE thẳng hàng.
Đề học kỳ 2 Toán 9 năm 2022 - 2023 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 14 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai công nhân cùng làm chung một công việc mất 12 giờ. Nếu người thứ nhất làm trong 10 giờ và người thứ hai làm trong 5 giờ thì được 2 3 công việc. Hỏi mỗi người làm một mình thì hoàn thành công việc trong thời gian bao lâu. + Một ống nhựa hình trụ dùng để thoát nước từ mái nhà có chiều dài 3m và đường kính 20cm. Hỏi diện tích nhựa để làm ống là bao nhiêu mét vuông? (bỏ qua độ dày của thành ống và lấy pi = 3,14). + Cho đường tròn (O) và dây BC cố định, không qua tâm. Điểm A thay đổi trên cung lớn BC (A khác B, C), điểm I là điểm chính giữa cung nhỏ BC. Gọi H, K lần lượt là hình chiếu vuông góc của I trên các đường thẳng AB, AC. Chứng minh: a) Bốn điểm A, H, I, K cùng thuộc một đường tròn. b) Tam giác IHK là tam giác cân và HIK BIC. c) Khi A thay đổi trên cung lớn BC thì đường thẳng HK luôn đi qua một điểm cố định.
Đề học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Phương Liệt - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Phương Liệt, quận Thanh Xuân, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Phương Liệt – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một công ty phải sản xuất 1000 chiếc áo trong một thời gian quy định. Nhờ tăng năng suất lao động, mỗi ngày công ty đã làm thêm được 10 sản phẩm so với kế hoạch. Vì vậy công ty đã làm vượt mức kế hoạch 80 sản phẩm và hoàn thành công việc sớm hơn 2 ngày so với qui định. Tính số áo mà công ty phải làm trong một ngày theo kế hoạch. + Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy pi = 3,14). + Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. 1) Chứng minh: Tứ giác AEHF nội tiếp. 2) Kẻ đường kính AK của đường tròn (O), gọi M là hình chiếu vuông góc của C trên AK. Chứng minh AB.AC = AD.AK và MD // BK. 3) Giả sử BC là dây cố định của đường tròn (O) còn A di động trên cung lớn BC. Tìm vị trí của điểm A để diện tích tam giác AEH lớn nhất.
Đề học kì 2 Toán 9 năm 2022 - 2023 trường THCS Chu Văn An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học kì 2 Toán 9 năm 2022 – 2023 trường THCS Chu Văn An – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một lâm trường dự định trồng 75 ha rừng trong một số tuần. Khi thực hiện, do cải tiến kĩ thuật nên mỗi tuần họ trồng vượt mức 5 ha so với kế hoạch. Vì vậy lâm trường đã trồng được 80 ha và hoàn thành sớm hơn dự định 1 tuần. Hỏi mỗi tuần lâm trường dự định trồng bao nhiêu ha rừng? + Một chiếc nón lá có đường sinh bằng 30cm, đường kính đáy bằng 40cm. Người ta dùng hai lớp lá để phủ lên bề mặt xung quanh của nón. Tính diện tích lá cần dùng cho một chiếc nón đó. + Cho ΔABC nhọn (AB < AC) nội tiếp đường tròn (O), đường cao AH. Gọi M và N lần lượt là hình chiếu của H trên cạnh AB và AC. 1) Chứng minh: Bốn điểm A, M, H, N cùng nằm trên một đường tròn. 2) Chứng minh: tam giác AMN và tam giác ACB đồng dạng. 3) Đường thẳng NM cắt đường thẳng BC tại P. Chứng minh: PH2 = PB.PC.